Skip to main content

hgboost is a python package for hyperparameter optimization for xgboost, catboost and lightboost for both classification and regression tasks.

Project description

hgboost - Hyperoptimized Gradient Boosting

Python PyPI Version License Github Forks GitHub Open Issues Project Status Downloads Downloads DOI Sphinx Open In Colab Medium


hgboost is short for Hyperoptimized Gradient Boosting and is a python package for hyperparameter optimization for xgboost, catboost and lightboost using cross-validation, and evaluating the results on an independent validation set. hgboost can be applied for classification and regression tasks.

hgboost is fun because:

* 1. Hyperoptimization of the Parameter-space using bayesian approach.
* 2. Determines the best scoring model(s) using k-fold cross validation.
* 3. Evaluates best model on independent evaluation set.
* 4. Fit model on entire input-data using the best model.
* 5. Works for classification and regression
* 6. Creating a super-hyperoptimized model by an ensemble of all individual optimized models.
* 7. Return model, space and test/evaluation results.
* 8. Makes insightful plots.

⭐️ Star this repo if you like it ⭐️


Blogs

Medium Blog 1: The Best Boosting Model using Bayesian Hyperparameter Tuning but without Overfitting.

Medium Blog 2: Create Explainable Gradient Boosting Classification models using Bayesian Hyperparameter Optimization.


Documentation pages

On the documentation pages you can find detailed information about the working of the hgboost with many examples.


Colab Notebooks

  • Open regression example In Colab Regression example

  • Open classification example In Colab Classification example


Schematic overview of hgboost

Installation Environment

conda create -n env_hgboost python=3.8
conda activate env_hgboost

Install from pypi

pip install hgboost
pip install -U hgboost # Force update

Import hgboost package

import hgboost as hgboost

Examples

Classification example for xgboost, catboost and lightboost:

# Load library
from hgboost import hgboost

# Initialization
hgb = hgboost(max_eval=10, threshold=0.5, cv=5, test_size=0.2, val_size=0.2, top_cv_evals=10, random_state=42)

# Fit xgboost by hyperoptimization and cross-validation
results = hgb.xgboost(X, y, pos_label='survived')

# [hgboost] >Start hgboost classification..
# [hgboost] >Collecting xgb_clf parameters.
# [hgboost] >Number of variables in search space is [11], loss function: [auc].
# [hgboost] >method: xgb_clf
# [hgboost] >eval_metric: auc
# [hgboost] >greater_is_better: True
# [hgboost] >pos_label: True
# [hgboost] >Total dataset: (891, 204) 
# [hgboost] >Hyperparameter optimization..
#  100% |----| 500/500 [04:39<05:21,  1.33s/trial, best loss: -0.8800619834710744]
# [hgboost] >Best performing [xgb_clf] model: auc=0.881198
# [hgboost] >5-fold cross validation for the top 10 scoring models, Total nr. tests: 50
# 100%|██████████| 10/10 [00:42<00:00,  4.27s/it]
# [hgboost] >Evalute best [xgb_clf] model on independent validation dataset (179 samples, 20.00%).
# [hgboost] >[auc] on independent validation dataset: -0.832
# [hgboost] >Retrain [xgb_clf] on the entire dataset with the optimal parameters settings.
# Plot the ensemble classification validation results
hgb.plot_validation()


References

* http://hyperopt.github.io/hyperopt/
* https://github.com/dmlc/xgboost
* https://github.com/microsoft/LightGBM
* https://github.com/catboost/catboost

Maintainers

Contribute

  • Contributions are welcome.

Licence See LICENSE for details.

Coffee

  • If you wish to buy me a Coffee for this work, it is very appreciated :)

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

hgboost-1.1.6.tar.gz (29.5 kB view details)

Uploaded Source

Built Distribution

hgboost-1.1.6-py3-none-any.whl (28.5 kB view details)

Uploaded Python 3

File details

Details for the file hgboost-1.1.6.tar.gz.

File metadata

  • Download URL: hgboost-1.1.6.tar.gz
  • Upload date:
  • Size: 29.5 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.1.1 CPython/3.12.7

File hashes

Hashes for hgboost-1.1.6.tar.gz
Algorithm Hash digest
SHA256 01cfa190bec29d804bd66001b5d8e52d23811aad9d31c15b9220fdebd1e3fec4
MD5 fcaf4e370621f95d08d889ce0989329a
BLAKE2b-256 15e2137e9a18f3736d7e674f17274a0a8ea56b8de35959fe8e41c024069597df

See more details on using hashes here.

File details

Details for the file hgboost-1.1.6-py3-none-any.whl.

File metadata

  • Download URL: hgboost-1.1.6-py3-none-any.whl
  • Upload date:
  • Size: 28.5 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.1.1 CPython/3.12.7

File hashes

Hashes for hgboost-1.1.6-py3-none-any.whl
Algorithm Hash digest
SHA256 bce57289a9fd8584c366138bfd71285b989a316e300ba30b00f00800c47714f8
MD5 2a90c1df7898e5e39acc7c614a3dc7df
BLAKE2b-256 674509e55ee339c0b000df37cd4197eae7effc92a58b1603de0a79b91dfdeb3b

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page