Skip to main content

[Stolen copy of https://pypi.org/project/pure-protobuf/] Implementation of Protocol Buffers with dataclass-based schemaʼs

Project description

pure-protobuf

Build Status Coverage Status PyPI - Downloads PyPI – Version PyPI – Python License

This guide describes how to use pure-protobuf to structure your data. It tries to follow the standard developer guide. It also assumes that you're familiar with Protocol Buffers.

Defining a message type

Let's look at the simple example. Here's how it looks like in proto3 syntax:

syntax = "proto3";

message SearchRequest {
  string query = 1;
  int32 page_number = 2;
  int32 result_per_page = 3;
}

And this is how you define it with pure-protobuf:

from dataclasses import dataclass

from pure_protobuf.dataclasses_ import field, message
from pure_protobuf.types import int32


@message
@dataclass
class SearchRequest:
    query: str = field(1, default='')
    page_number: int32 = field(2, default=int32(0))
    result_per_page: int32 = field(3, default=int32(0))
   

assert SearchRequest(
    query='hello',
    page_number=int32(1),
    result_per_page=int32(10),
).dumps() == b'\x0A\x05hello\x10\x01\x18\x0A'

Keep in mind that @message decorator must stay on top of @dataclass.

Serializing

Each class wrapped with @message gets two methods attached:

  • dumps() -> bytes to serialize message into a byte string
  • dump(io: IO) to serialize message into a file-like object

Deserializing

Each classes wrapped with @message gets two class methods attached:

  • loads(bytes_: bytes) -> TMessage to deserialize a message from a byte string
  • load(io: IO) -> TMessage to deserialize a message from a file-like object

These methods are also available as standalone functions in pure_protobuf.dataclasses_:

  • load(cls: Type[T], io: IO) -> T
  • loads(cls: Type[T], bytes_: bytes) -> T

Specifying field types

In pure-protobuf types are specified with type hints. Native Python float, str, bytes and bool types are supported. Since other Protocol Buffers types don't exist as native Python types, the package uses NewType to define them. They're available via pure_protobuf.types and named in the same way.

Assigning field numbers

Field numbers are provided via the metadata parameter of the field function: field(..., metadata={'number': number}). However, to improve readability and save some characters, pure-protobuf provides a helper function pure_protobuf.dataclasses_.field which accepts field number as the first positional parameter and just passes it to the standard field function.

Specifying field rules

typing.List and typing.Iterable annotations are automatically converted to repeated fields. Repeated fields of scalar numeric types use packed encoding by default:

from dataclasses import dataclass
from typing import List

from pure_protobuf.dataclasses_ import field, message
from pure_protobuf.types import int32


@message
@dataclass
class Message:
    foo: List[int32] = field(1, default_factory=list)

In case, unpacked encoding is explicitly wanted, the packed-argument of field can be used as in:

from dataclasses import dataclass
from typing import List

from pure_protobuf.dataclasses_ import field, message
from pure_protobuf.types import int32

@message
@dataclass
class Message:
    foo: List[int32] = field(1, default_factory=list, packed=False)

It's also possible to wrap a field type with typing.Optional. If None is assigned to an Optional field, then the field will be skipped during serialization.

Default values

In pure-protobuf it's developer's responsibility to take care of default values. If encoded message does not contain a particular element, the corresponding field stays unassigned. It means that the standard default and default_factory parameters of the field function work as usual:

from dataclasses import dataclass
from typing import Optional

from pure_protobuf.dataclasses_ import field, message
from pure_protobuf.types import int32


@message
@dataclass
class Foo:
    bar: int32 = field(1, default=42)
    qux: Optional[int32] = field(2, default=None)


assert Foo().dumps() == b'\x08\x2A'
assert Foo.loads(b'') == Foo(bar=42)

In fact, the pattern qux: Optional[int32] = field(2, default=None) is so common that there's a convenience function optional_field to define an Optional field with None value by default:

from dataclasses import dataclass
from typing import Optional

from pure_protobuf.dataclasses_ import optional_field, message
from pure_protobuf.types import int32


@message
@dataclass
class Foo:
    qux: Optional[int32] = optional_field(2)


assert Foo().dumps() == b''
assert Foo.loads(b'') == Foo(qux=None)

Enumerations

Subclasses of the standard IntEnum class are supported:

from dataclasses import dataclass
from enum import IntEnum

from pure_protobuf.dataclasses_ import field, message


class TestEnum(IntEnum):
    BAR = 1


@message
@dataclass
class Test:
    foo: TestEnum = field(1)


assert Test(foo=TestEnum.BAR).dumps() == b'\x08\x01'
assert Test.loads(b'\x08\x01') == Test(foo=TestEnum.BAR)

Using other message types

Embedded messages are defined the same way as normal dataclasses:

from dataclasses import dataclass

from pure_protobuf.dataclasses_ import field, message
from pure_protobuf.types import int32


@message
@dataclass
class Test1:
    a: int32 = field(1, default=0)


@message
@dataclass
class Test3:
    c: Test1 = field(3, default_factory=Test1)


assert Test3(c=Test1(a=int32(150))).dumps() == b'\x1A\x03\x08\x96\x01'

Well-known message types

pure_protobuf.google also provides built-in definitions for the following well-known message types:

Annotation pure_protobuf.types.google .proto
datetime Timestamp Timestamp
timedelta Duration Duration
typing.Any Any_ Any

They're handled automatically, you have nothing to do but use them normally in type hints:

from dataclasses import dataclass
from datetime import datetime
from typing import Optional

from pure_protobuf.dataclasses_ import field, message


@message
@dataclass
class Test:
    timestamp: Optional[datetime] = field(1, default=None)

Any

Since pure-protobuf is not able to download or parse .proto definitions, it provides a limited implementation of the Any message type. That is, you still have to define all message classes in the usual way. Then, pure-protobuf will be able to import and instantiate an encoded value:

from dataclasses import dataclass
from typing import Any, Optional

from pure_protobuf.dataclasses_ import field, message
from pure_protobuf.types.google import Timestamp


@message
@dataclass
class Message:
    value: Optional[Any] = field(1)


# Here `Timestamp` is used just as an example, in principle any importable user type works.
message = Message(value=Timestamp(seconds=42))
assert Message.loads(message.dumps()) == message

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

hidden-pure-protobuf-0.2.tar.gz (13.9 kB view details)

Uploaded Source

Built Distribution

hidden_pure_protobuf-0.2-py3-none-any.whl (17.3 kB view details)

Uploaded Python 3

File details

Details for the file hidden-pure-protobuf-0.2.tar.gz.

File metadata

  • Download URL: hidden-pure-protobuf-0.2.tar.gz
  • Upload date:
  • Size: 13.9 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.0 CPython/3.10.4

File hashes

Hashes for hidden-pure-protobuf-0.2.tar.gz
Algorithm Hash digest
SHA256 ccee3efb201a2d10a856567911dccc8767eb73241c16f44817a7c10660a0d23c
MD5 19a358b70b966815bb1f56bf3ea864d3
BLAKE2b-256 dd49f11ea798254a8584f9a2cc3891338b0f645b4e744a04c75e22e116682fa7

See more details on using hashes here.

File details

Details for the file hidden_pure_protobuf-0.2-py3-none-any.whl.

File metadata

File hashes

Hashes for hidden_pure_protobuf-0.2-py3-none-any.whl
Algorithm Hash digest
SHA256 a974f589715e25777c036aa77ea0fc243f801e03d0c261de71c8301bdabe7ef0
MD5 f94ccee3b0cbf43f41f720b6cb0006df
BLAKE2b-256 68e56390e82ce0a592e0fe5a0cb4924ecd1229482f5214e650fafc0d29b3ed1d

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page