Skip to main content

Concurrent HDF5 and NetCDF4 reader (experimental)

Project description

Crates.io PyPI Documentation Build (rust) Build (python) codecov Rust nightly

HIDEFIX

This Rust and Python library provides an alternative reader for the HDF5 file or NetCDF4 file (which uses HDF5) which supports concurrent access to data. This is achieved by building an index of the chunks, allowing a thread to use many file handles to read the file. The original (native) HDF5 library is used to build the index, but once it has been created it is no longer needed. The index can be serialized to disk so that performing the indexing is not necessary.

In Rust:

use hidefix::prelude::*;

let idx = Index::index("tests/data/coads_climatology.nc4").unwrap();
let mut r = idx.reader("SST").unwrap();

let values = r.values::<f32>(None, None).unwrap();

println!("SST: {:?}", values);

or with Python using Xarray:

import xarray as xr
import hidefix

ds = xr.open_dataset('file.nc', engine='hidefix')
print(ds)

Motivation

The HDF5 library requires internal locks to be thread-safe since it relies on internal buffers which cannot be safely accessed/written to from multiple threads. This effectively causes multi-threaded applications to use sequential reads, while competing for the locks. And also apparently cause each other trouble, perhaps through dropping cached chunks which other threads still need. It can be safely used from different processes, but that requires potentially much more overhead than multi-threaded or asynchronous code.

Some basic benchmarks

hidefix is intended to perform better when concurrent reads are made either to the same dataset, same file or to different files from a single process. For basic benchmarks the performance is on-par or slightly better compared to doing standard sequential reads than the native HDF5 library (through its rust-bindings). Where hidefix shines is once the multiple threads in the same process tries to read in any way from a HDF5 file simultaneously.

This simple benchmark tries to read a small dataset sequentially or concurrently using the cached reader from hidefix and the native reader from HDF5. The dataset is chunked, shuffled and compressed (using gzip):

$ cargo bench --bench concurrency -- --ignored

test shuffled_compressed::cache_concurrent_reads  ... bench:  15,903,406 ns/iter (+/- 220,824)
test shuffled_compressed::cache_sequential        ... bench:  59,778,761 ns/iter (+/- 602,316)
test shuffled_compressed::native_concurrent_reads ... bench: 411,605,868 ns/iter (+/- 35,346,233)
test shuffled_compressed::native_sequential       ... bench: 103,457,237 ns/iter (+/- 7,703,936)

Inspiration and other projects

This work is based in part on the DMR++ module of the OPeNDAP Hyrax server. The zarr format does something similar, and the same approach has been tested out on HDF5 as swell.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

hidefix-0.7.0.tar.gz (9.1 MB view details)

Uploaded Source

Built Distribution

hidefix-0.7.0-cp38-abi3-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (9.2 MB view details)

Uploaded CPython 3.8+manylinux: glibc 2.17+ x86-64

File details

Details for the file hidefix-0.7.0.tar.gz.

File metadata

  • Download URL: hidefix-0.7.0.tar.gz
  • Upload date:
  • Size: 9.1 MB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.9.17

File hashes

Hashes for hidefix-0.7.0.tar.gz
Algorithm Hash digest
SHA256 bc073d021f1a6c1735c9123423d452a0ba0fc21a980b16e0d58aea839f11dd00
MD5 32a2196f7e9f47cb0c588b4d18853458
BLAKE2b-256 51e0c85bf1b4b5e11568abed72a4d67270f8fcf4a9848b8928cca989c2d8342a

See more details on using hashes here.

File details

Details for the file hidefix-0.7.0-cp38-abi3-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for hidefix-0.7.0-cp38-abi3-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 f29cba74c35772274aeb24a7e9b34a91177acf2bc5ce58560a5c83d8ec0df68f
MD5 ae09d27298cfd38ed848c8baffc67a0a
BLAKE2b-256 d29738ca1cbb6b598b6736ef822be1dd00b043e8711566550e673cb96cf9119b

See more details on using hashes here.

Supported by

AWS Cloud computing and Security Sponsor Datadog Monitoring Fastly CDN Google Download Analytics Pingdom Monitoring Sentry Error logging StatusPage Status page