Skip to main content

Clustering high-dimensional instances (e.g. T cell receptors) and testing whether clusters of instances are differentially abundant in two or more categorical conditions, with interactive tree visualization.

Project description

hierdiff

Build Status PyPI version Coverage Status

A package that is useful for clustering high-dimensional instances (e.g. T cell receptors) and testing whether clusters of instances are differentially abundant in two or more categorical conditions. The package provides d3/SVG rendering of scipy hierarchical clustering dendrograms with zooming, panning and tooltips. This uniquely allows for exploring large trees of datasets, conditioned on a categorical trait.

Installation

pip install hierdiff

Example

import hierdiff
from scipy.spatial.distance import squareform

"""Contains categorical variable column 'trait1' and
instance counts in 'count'"""
dat, pwdist = generate_data()

res, Z = hierdiff.hcluster_tally(dat,
				                  pwmat=squareform(pwdist),
				                  x_cols=['trait1'],
				                  count_col='count',
				                  method='complete')

res = hierdiff.cluster_association_test(res, method='fishers')

"""Plot frequency of trait at nodes with p-value < 0.05"""
html = plot_hclust_props(Z, title='test_props2',
                            res=res, alpha=0.05, alpha_col='pvalue')

example

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

hierdiff-0.85.tar.gz (24.4 kB view details)

Uploaded Source

Built Distribution

hierdiff-0.85-py3-none-any.whl (27.3 kB view details)

Uploaded Python 3

File details

Details for the file hierdiff-0.85.tar.gz.

File metadata

  • Download URL: hierdiff-0.85.tar.gz
  • Upload date:
  • Size: 24.4 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.0.0 CPython/3.11.5

File hashes

Hashes for hierdiff-0.85.tar.gz
Algorithm Hash digest
SHA256 2009a27e5e878b447bccbfa8981b715958fd7d6e29eae6ca473db2f35409298a
MD5 90dbe73498a3bb78d7d2fbee11f46da4
BLAKE2b-256 a8e650b21c82dc08f6ed0390913916de4535f165f23e0a7b90de7ab631c283b3

See more details on using hashes here.

File details

Details for the file hierdiff-0.85-py3-none-any.whl.

File metadata

  • Download URL: hierdiff-0.85-py3-none-any.whl
  • Upload date:
  • Size: 27.3 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.0.0 CPython/3.11.5

File hashes

Hashes for hierdiff-0.85-py3-none-any.whl
Algorithm Hash digest
SHA256 94672c639e6007c1adf1ecd8e9d707dfe37af218859fb50e0078a783bc4533e1
MD5 bc8a2cbbabee803531a656afe9a33a7d
BLAKE2b-256 92604c30b5dce11db9b8533fc639b8993ebc00fb86a6f658bede5cf112324383

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page