Skip to main content

Clustering high-dimensional instances (e.g. T cell receptors) and testing whether clusters of instances are differentially abundant in two or more categorical conditions, with interactive tree visualization.

Project description

hierdiff

Build Status PyPI version Coverage Status

A package that is useful for clustering high-dimensional instances (e.g. T cell receptors) and testing whether clusters of instances are differentially abundant in two or more categorical conditions. The package provides d3/SVG rendering of scipy hierarchical clustering dendrograms with zooming, panning and tooltips. This uniquely allows for exploring large trees of datasets, conditioned on a categorical trait.

Installation

pip install hierdiff

Example

import hierdiff
from scipy.spatial.distance import squareform

"""Contains categorical variable column 'trait1' and
instance counts in 'count'"""
dat, pwdist = generate_data()

res, Z = hierdiff.hcluster_tally(dat,
				                  pwmat=squareform(pwdist),
				                  x_cols=['trait1'],
				                  count_col='count',
				                  method='complete')

res = hierdiff.cluster_association_test(res, method='fishers')

"""Plot frequency of trait at nodes with p-value < 0.05"""
html = plot_hclust_props(Z, title='test_props2',
                            res=res, alpha=0.05, alpha_col='pvalue')

example

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

hierdiff-0.4.tar.gz (21.6 kB view details)

Uploaded Source

Built Distribution

hierdiff-0.4-py3-none-any.whl (25.3 kB view details)

Uploaded Python 3

File details

Details for the file hierdiff-0.4.tar.gz.

File metadata

  • Download URL: hierdiff-0.4.tar.gz
  • Upload date:
  • Size: 21.6 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/2.0.0 pkginfo/1.5.0.1 requests/2.23.0 setuptools/46.4.0.post20200518 requests-toolbelt/0.9.1 tqdm/4.46.0 CPython/3.6.10

File hashes

Hashes for hierdiff-0.4.tar.gz
Algorithm Hash digest
SHA256 baee84ac62dbc690ed14777692af56222999b3138082bbc4323e15678a16a4f5
MD5 e44880017a7d4ff035a695dcc9856278
BLAKE2b-256 45b171589e8e627771cf4621026cff6e8007b7c4b0f45d1a80f0379438c66ad5

See more details on using hashes here.

File details

Details for the file hierdiff-0.4-py3-none-any.whl.

File metadata

  • Download URL: hierdiff-0.4-py3-none-any.whl
  • Upload date:
  • Size: 25.3 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/2.0.0 pkginfo/1.5.0.1 requests/2.23.0 setuptools/46.4.0.post20200518 requests-toolbelt/0.9.1 tqdm/4.46.0 CPython/3.6.10

File hashes

Hashes for hierdiff-0.4-py3-none-any.whl
Algorithm Hash digest
SHA256 69d490500edb888aa15bb8c3414ee8a9bf3243867daba3b204b46edbc00a7cae
MD5 ad9a43164911c37fb07a95393cdaedd8
BLAKE2b-256 c6029baeda84ffa83900f6c6d8655ce4ecc50965326f6b2eb15e934c5124c3a3

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page