Skip to main content

Hierarchical time series reconciliation

Project description

hierTS Airlab Amsterdam

Hierarchical forecasting using reconciliation methods

Hierachical Time Series (hierTS) is a lightweight package that offers hierarchical forecasting reconciliation techniques to Python users.

For more details, read the docs or check out the examples.

Reference

The reconciliation methods that are currently in place are based on:

  • Wickramasuriya, S. L., Athanasopoulos, G., & Hyndman, R. J. (2019). Optimal forecast reconciliation for hierarchical and grouped time series through trace minimization. Journal of the American Statistical Association, 114(526), 804-819.

License

This project is licensed under the terms of the Apache 2.0 license.

Acknowledgements

This project was developed by Airlab Amsterdam.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

hierts-0.1.tar.gz (14.9 kB view details)

Uploaded Source

Built Distribution

hierts-0.1-py3-none-any.whl (14.3 kB view details)

Uploaded Python 3

File details

Details for the file hierts-0.1.tar.gz.

File metadata

  • Download URL: hierts-0.1.tar.gz
  • Upload date:
  • Size: 14.9 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.7.1 importlib_metadata/4.11.3 pkginfo/1.8.2 requests/2.27.1 requests-toolbelt/0.9.1 tqdm/4.43.0 CPython/3.7.13

File hashes

Hashes for hierts-0.1.tar.gz
Algorithm Hash digest
SHA256 2d2d6d0ded58558c3e67f4d90b9ba6993f91613a838641e3b6247264309d1945
MD5 237e99597bfaa8a09e95b3360b0c347d
BLAKE2b-256 420467043faa2acdd91edd7261198601f3f761114b6774dd04d02496eb51ac79

See more details on using hashes here.

File details

Details for the file hierts-0.1-py3-none-any.whl.

File metadata

  • Download URL: hierts-0.1-py3-none-any.whl
  • Upload date:
  • Size: 14.3 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.7.1 importlib_metadata/4.11.3 pkginfo/1.8.2 requests/2.27.1 requests-toolbelt/0.9.1 tqdm/4.43.0 CPython/3.7.13

File hashes

Hashes for hierts-0.1-py3-none-any.whl
Algorithm Hash digest
SHA256 dd86783372c701fbf83fc983e6f5f5e53498e33431145ae32fd32d3c0b5bd4d4
MD5 fe7b94a7854cdfa4e5b71578408e5efa
BLAKE2b-256 051b6280329bbd781c8afe589d39f5c086af8bb9457fe9bb3267d0f132400fda

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page