Skip to main content

Hierarchical time series reconciliation

Project description

hierTS Airlab Amsterdam

PyPi version Python version

Hierachical Time Series (hierTS) is a lightweight package that offers hierarchical forecasting reconciliation techniques to Python users.

For more details, read the docs or check out the examples.

Reference

The reconciliation methods that are currently in place are based on:

  • Wickramasuriya, S. L., Athanasopoulos, G., & Hyndman, R. J. (2019). Optimal forecast reconciliation for hierarchical and grouped time series through trace minimization. Journal of the American Statistical Association, 114(526), 804-819.
  • Ben Taieb, Souhaib, and Bonsoo Koo (2019). ‘Regularized Regression for Hierarchical Forecasting Without Unbiasedness Conditions’. In Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, 1337–47. Anchorage AK USA: ACM, 2019. https://doi.org/10.1145/3292500.3330976.

License

This project is licensed under the terms of the Apache 2.0 license.

Acknowledgements

This project was developed by Airlab Amsterdam.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

hierts-0.3.tar.gz (17.7 kB view details)

Uploaded Source

Built Distribution

hierts-0.3-py3-none-any.whl (21.0 kB view details)

Uploaded Python 3

File details

Details for the file hierts-0.3.tar.gz.

File metadata

  • Download URL: hierts-0.3.tar.gz
  • Upload date:
  • Size: 17.7 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.7.1 importlib_metadata/4.11.3 pkginfo/1.8.2 requests/2.27.1 requests-toolbelt/0.9.1 tqdm/4.43.0 CPython/3.7.13

File hashes

Hashes for hierts-0.3.tar.gz
Algorithm Hash digest
SHA256 04c3fe37cf8cfdc0371ed6df112e0e8929aa924a9554c852ba2ddb4a71cfd02d
MD5 f74e169da88e3941902a50554af90c4a
BLAKE2b-256 8462b8e923fdf476c3dbe93f5f14cad255198b1fb143654351400de7139f1674

See more details on using hashes here.

File details

Details for the file hierts-0.3-py3-none-any.whl.

File metadata

  • Download URL: hierts-0.3-py3-none-any.whl
  • Upload date:
  • Size: 21.0 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.7.1 importlib_metadata/4.11.3 pkginfo/1.8.2 requests/2.27.1 requests-toolbelt/0.9.1 tqdm/4.43.0 CPython/3.7.13

File hashes

Hashes for hierts-0.3-py3-none-any.whl
Algorithm Hash digest
SHA256 9fad18b965fb3d19255430de07cdd654e612c8f3e3afbd874df681681d291fcb
MD5 f4d959756faddfee491ebb287455e466
BLAKE2b-256 4f204dbeec46b2e23bcbe3943860be2fda555e4b029a8f363b09e8178d270eeb

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page