Skip to main content

Hierarchical time series reconciliation

Project description

hierTS Airlab Amsterdam

PyPi version Python version

Hierachical Time Series (hierTS) is a lightweight package that offers hierarchical forecasting reconciliation techniques to Python users.

For more details, read the docs or check out the examples.

Reference

The reconciliation methods that are currently in place are based on:

  • Wickramasuriya, S. L., Athanasopoulos, G., & Hyndman, R. J. (2019). Optimal forecast reconciliation for hierarchical and grouped time series through trace minimization. Journal of the American Statistical Association, 114(526), 804-819.
  • Ben Taieb, Souhaib, and Bonsoo Koo (2019). ‘Regularized Regression for Hierarchical Forecasting Without Unbiasedness Conditions’. In Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, 1337–47. Anchorage AK USA: ACM, 2019. https://doi.org/10.1145/3292500.3330976.

License

This project is licensed under the terms of the Apache 2.0 license.

Acknowledgements

This project was developed by Airlab Amsterdam.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

hierts-0.5.tar.gz (17.8 kB view details)

Uploaded Source

Built Distribution

hierts-0.5-py3-none-any.whl (21.1 kB view details)

Uploaded Python 3

File details

Details for the file hierts-0.5.tar.gz.

File metadata

  • Download URL: hierts-0.5.tar.gz
  • Upload date:
  • Size: 17.8 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.9.7

File hashes

Hashes for hierts-0.5.tar.gz
Algorithm Hash digest
SHA256 696466244f1455ec70258ba8094312469bd55ffb8b99abb9157d8ee1968cef64
MD5 09184164386a7925a7d2ecd2a4befe94
BLAKE2b-256 c64db76494a8620d044f816ae3c04af3ba32d20d3fab77ad30cde43650989779

See more details on using hashes here.

File details

Details for the file hierts-0.5-py3-none-any.whl.

File metadata

  • Download URL: hierts-0.5-py3-none-any.whl
  • Upload date:
  • Size: 21.1 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.9.7

File hashes

Hashes for hierts-0.5-py3-none-any.whl
Algorithm Hash digest
SHA256 97ee2c9565a8f1f2de20da39ba2b473ae97781575814435a139253e894e43b3a
MD5 4506ccd21c5c6f51afd8a1d801d64ab6
BLAKE2b-256 fd843a9a15c4f0a0dc0d6e57d6a4695ae9b6b3ac0fbea15dd0aecb84d3f2ab86

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page