Skip to main content

Hierarchical time series reconciliation

Project description

hierTS Airlab Amsterdam

PyPi version Python version

Hierachical Time Series (hierTS) is a lightweight package that offers hierarchical forecasting reconciliation techniques to Python users.

For more details, read the docs or check out the examples.

Reference

The reconciliation methods that are currently in place are based on:

  • Wickramasuriya, S. L., Athanasopoulos, G., & Hyndman, R. J. (2019). Optimal forecast reconciliation for hierarchical and grouped time series through trace minimization. Journal of the American Statistical Association, 114(526), 804-819.
  • Ben Taieb, Souhaib, and Bonsoo Koo (2019). ‘Regularized Regression for Hierarchical Forecasting Without Unbiasedness Conditions’. In Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, 1337–47. Anchorage AK USA: ACM, 2019. https://doi.org/10.1145/3292500.3330976.

License

This project is licensed under the terms of the Apache 2.0 license.

Acknowledgements

This project was developed by Airlab Amsterdam.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

hierts-0.6.tar.gz (17.8 kB view details)

Uploaded Source

Built Distribution

hierts-0.6-py3-none-any.whl (21.1 kB view details)

Uploaded Python 3

File details

Details for the file hierts-0.6.tar.gz.

File metadata

  • Download URL: hierts-0.6.tar.gz
  • Upload date:
  • Size: 17.8 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.9.7

File hashes

Hashes for hierts-0.6.tar.gz
Algorithm Hash digest
SHA256 8f4d55c385e38809481d3f7387b8cc08b3258e95faa1dd468a237a5b3564d3f8
MD5 57a93ca0008eb319842f5d0eca3dd7c3
BLAKE2b-256 69bb4295d13df9c035e83be981cc7e1276cbeaa7d9e9653f7660eaeaa03765e2

See more details on using hashes here.

File details

Details for the file hierts-0.6-py3-none-any.whl.

File metadata

  • Download URL: hierts-0.6-py3-none-any.whl
  • Upload date:
  • Size: 21.1 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.9.7

File hashes

Hashes for hierts-0.6-py3-none-any.whl
Algorithm Hash digest
SHA256 ff35a75cde954aff786ca0724bc86d0e852119f16d80c8b11937c0f4482c524d
MD5 c55d6152fcc27506bae2dad0f74daa84
BLAKE2b-256 8d4e4660822c8cde3823362d951517aa6121c54e7525d772e3b9829d84ad0caf

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page