Skip to main content

Hierarchical time series reconciliation

Project description

hierTS Airlab Amsterdam

PyPi version Python version

Hierachical Time Series (hierTS) is a lightweight package that offers hierarchical forecasting reconciliation techniques to Python users.

For more details, read the docs or check out the examples.

Reference

The reconciliation methods that are currently in place are based on:

  • Wickramasuriya, S. L., Athanasopoulos, G., & Hyndman, R. J. (2019). Optimal forecast reconciliation for hierarchical and grouped time series through trace minimization. Journal of the American Statistical Association, 114(526), 804-819.
  • Ben Taieb, Souhaib, and Bonsoo Koo (2019). ‘Regularized Regression for Hierarchical Forecasting Without Unbiasedness Conditions’. In Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, 1337–47. Anchorage AK USA: ACM, 2019. https://doi.org/10.1145/3292500.3330976.

License

This project is licensed under the terms of the Apache 2.0 license.

Acknowledgements

This project was developed by Airlab Amsterdam.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

hierts-0.7.1.tar.gz (18.3 kB view details)

Uploaded Source

Built Distribution

hierts-0.7.1-py3-none-any.whl (21.6 kB view details)

Uploaded Python 3

File details

Details for the file hierts-0.7.1.tar.gz.

File metadata

  • Download URL: hierts-0.7.1.tar.gz
  • Upload date:
  • Size: 18.3 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.9.7

File hashes

Hashes for hierts-0.7.1.tar.gz
Algorithm Hash digest
SHA256 32dd19cda45a6f0648e59ed2c46a9317f7b7534ef6ead35e36bca55efffe637f
MD5 99539bb91317e423464c780df9d2092d
BLAKE2b-256 e1816bf396229e8170687d176067a27ecd596649f171f67bd9cc24c220ead3d6

See more details on using hashes here.

File details

Details for the file hierts-0.7.1-py3-none-any.whl.

File metadata

  • Download URL: hierts-0.7.1-py3-none-any.whl
  • Upload date:
  • Size: 21.6 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.9.7

File hashes

Hashes for hierts-0.7.1-py3-none-any.whl
Algorithm Hash digest
SHA256 1dbd434441ffdd862f1b6f081d60f2959520116cae425e95d24cadaaff6397a0
MD5 e5e413019822bef4da95be01085853bc
BLAKE2b-256 741a5338d590240cb5a699c38799fbdcdb9ebb07629ea1b11dfe740e1caaacb2

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page