Skip to main content

Hierarchical time series reconciliation

Project description

hierTS Airlab Amsterdam

PyPi version Python version

Hierachical Time Series (hierTS) is a lightweight package that offers hierarchical forecasting reconciliation techniques to Python users.

For more details, read the docs or check out the examples.

Reference

The reconciliation methods that are currently in place are based on:

  • Wickramasuriya, S. L., Athanasopoulos, G., & Hyndman, R. J. (2019). Optimal forecast reconciliation for hierarchical and grouped time series through trace minimization. Journal of the American Statistical Association, 114(526), 804-819.
  • Ben Taieb, Souhaib, and Bonsoo Koo (2019). ‘Regularized Regression for Hierarchical Forecasting Without Unbiasedness Conditions’. In Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, 1337–47. Anchorage AK USA: ACM, 2019. https://doi.org/10.1145/3292500.3330976.

License

This project is licensed under the terms of the Apache 2.0 license.

Acknowledgements

This project was developed by Airlab Amsterdam.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

hierts-0.7.5.tar.gz (18.8 kB view details)

Uploaded Source

Built Distribution

hierts-0.7.5-py3-none-any.whl (21.8 kB view details)

Uploaded Python 3

File details

Details for the file hierts-0.7.5.tar.gz.

File metadata

  • Download URL: hierts-0.7.5.tar.gz
  • Upload date:
  • Size: 18.8 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.9.17

File hashes

Hashes for hierts-0.7.5.tar.gz
Algorithm Hash digest
SHA256 b1bffcfd6ab52accb2b5cb5bef5fe5925b3a5033b4e24c187b24e7c46aabc7b8
MD5 383aa4a9ea1a9c18afbe819d394d8026
BLAKE2b-256 f1ca47f85f30dbcf7289d4e941ecd91bf602910959793476aefefeb6ec67cda8

See more details on using hashes here.

File details

Details for the file hierts-0.7.5-py3-none-any.whl.

File metadata

  • Download URL: hierts-0.7.5-py3-none-any.whl
  • Upload date:
  • Size: 21.8 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.9.17

File hashes

Hashes for hierts-0.7.5-py3-none-any.whl
Algorithm Hash digest
SHA256 ee6e73c99c2b0d2656bf6d34ef6154744745e349845d39b04d2cff55a4286dc6
MD5 e296f59be2f5c62fbd8a74d8363ff937
BLAKE2b-256 adbb84083be6640d717384215dfb3d83cadfdbf1fdf82ebe12cdfa3c88d5526a

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page