Skip to main content

Hierarchical time series reconciliation

Project description

hierTS Airlab Amsterdam

PyPi version Python version

Hierachical Time Series (hierTS) is a lightweight package that offers hierarchical forecasting reconciliation techniques to Python users.

For more details, read the docs or check out the examples.

Reference

The reconciliation methods that are currently in place are based on:

  • Wickramasuriya, S. L., Athanasopoulos, G., & Hyndman, R. J. (2019). Optimal forecast reconciliation for hierarchical and grouped time series through trace minimization. Journal of the American Statistical Association, 114(526), 804-819.
  • Ben Taieb, Souhaib, and Bonsoo Koo (2019). ‘Regularized Regression for Hierarchical Forecasting Without Unbiasedness Conditions’. In Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, 1337–47. Anchorage AK USA: ACM, 2019. https://doi.org/10.1145/3292500.3330976.

License

This project is licensed under the terms of the Apache 2.0 license.

Acknowledgements

This project was developed by Airlab Amsterdam.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

hierts-0.8.0.tar.gz (18.8 kB view details)

Uploaded Source

Built Distribution

hierts-0.8.0-py3-none-any.whl (21.8 kB view details)

Uploaded Python 3

File details

Details for the file hierts-0.8.0.tar.gz.

File metadata

  • Download URL: hierts-0.8.0.tar.gz
  • Upload date:
  • Size: 18.8 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.9.17

File hashes

Hashes for hierts-0.8.0.tar.gz
Algorithm Hash digest
SHA256 b5c3bfe49f1ebe54d3e2902367bee6b9a80020ae6cd73580e08bd91c669bead1
MD5 03adbbec59d7eaa90abf5b208dd9b4c7
BLAKE2b-256 650e73b2dde4fb63a2a7192bf29b3032cd8890ab032c2eec018a8c503b5f1906

See more details on using hashes here.

File details

Details for the file hierts-0.8.0-py3-none-any.whl.

File metadata

  • Download URL: hierts-0.8.0-py3-none-any.whl
  • Upload date:
  • Size: 21.8 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.9.17

File hashes

Hashes for hierts-0.8.0-py3-none-any.whl
Algorithm Hash digest
SHA256 0476b6187267e550e990f3fae8f4f3a770c940ebe698237c4e811f49d48b8b32
MD5 77eaaa2e49ff8c0a6e1f82ee2c1ee7fd
BLAKE2b-256 307d1eda3ed5b09ab2acfb1d8604621bc143247f5048e74aa24ae9d04145082e

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page