Skip to main content

Hierarchical time series reconciliation

Project description

hierTS Airlab Amsterdam

PyPi version Python version

Hierachical Time Series (hierTS) is a lightweight package that offers hierarchical forecasting reconciliation techniques to Python users.

For more details, read the docs or check out the examples.

Reference

The reconciliation methods that are currently in place are based on:

  • Wickramasuriya, S. L., Athanasopoulos, G., & Hyndman, R. J. (2019). Optimal forecast reconciliation for hierarchical and grouped time series through trace minimization. Journal of the American Statistical Association, 114(526), 804-819.
  • Ben Taieb, Souhaib, and Bonsoo Koo (2019). ‘Regularized Regression for Hierarchical Forecasting Without Unbiasedness Conditions’. In Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, 1337–47. Anchorage AK USA: ACM, 2019. https://doi.org/10.1145/3292500.3330976.

License

This project is licensed under the terms of the Apache 2.0 license.

Acknowledgements

This project was developed by Airlab Amsterdam.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

hierts-0.8.1.tar.gz (18.8 kB view details)

Uploaded Source

Built Distribution

hierts-0.8.1-py3-none-any.whl (21.8 kB view details)

Uploaded Python 3

File details

Details for the file hierts-0.8.1.tar.gz.

File metadata

  • Download URL: hierts-0.8.1.tar.gz
  • Upload date:
  • Size: 18.8 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.9.17

File hashes

Hashes for hierts-0.8.1.tar.gz
Algorithm Hash digest
SHA256 25984a679969c12e7a2979b729d36e6273a1eaf0075d01e3b886fca16e094e8f
MD5 80fd36bbcf1669bc8b18fdd9580debe9
BLAKE2b-256 5f9f38a486b5b59d3e98402d3ae24a763bbb0e18fb7a81881a37686c2aafe956

See more details on using hashes here.

File details

Details for the file hierts-0.8.1-py3-none-any.whl.

File metadata

  • Download URL: hierts-0.8.1-py3-none-any.whl
  • Upload date:
  • Size: 21.8 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.9.17

File hashes

Hashes for hierts-0.8.1-py3-none-any.whl
Algorithm Hash digest
SHA256 6f2b945300169cf1d4e9cf6052691070e6f009ceab33ed3d89e1b0184a193c97
MD5 7fcc12a09634c7b4b352bb0ff9c58e33
BLAKE2b-256 bdd76319c6393a8a2303e54e010f2139e508a3daea3b578f5fd8906f1febb545

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page