Skip to main content

matplotlib functions to plot text with color highlighted substrings

Project description



This package provides two functions that allow you to plot text with <highlighted substrings> in matplotlib:

  • ax_text for plotting onto an axes in data coordinates.
  • fig_text for plotting onto the figure in figure coordinates.

They take a string with substring delimiters = ['<', '>'] to be highlighted according to highlight colors: 'The weather is (sunny) today. Yesterday it (rained).', color = 'k', highlight_colors = ['C1', 'grey'] prints the text with 'sunny' as orange and 'rained' as grey.

A minimal example would be:

import matplotlib.pyplot as plt
from highlight_text import ax_text, fig_text
# or
import highlight_text # then use highlight_text.ax_text or highlight_text.fig_text

fig, ax = plt.subplots()  
ax_text(x = 0, y = 0.5,
        s = 'The weather is <sunny> today. Yesterday it <rained>.'
        color = 'k', highlight_colors = ['C1', 'grey'])

or for the fig_text:

fig, ax = plt.subplots()  
fig_text(x = 0, y = 0.5,
         s = 'The weather is <sunny> today. Yesterday it <rained>.',
         color = 'k', highlight_colors = ['C1', 'grey'])

You can further highlight by using
highlight_styles ie. ['normal', 'italic', 'oblique']
and highlight_weights ie. ['regular', 'bold'].

This does work with linebreaks \n, fstrings and ha in ['left', 'right', 'center'] as well as va in ['botton', 'top', 'center'].

We can also use path_effects and set bounding boxes:

fig, ax = plt.subplots(figsize=(12, 2))

texts = fig_text(s='We can do <basic bbox highlights>, <path effect highlights>\n'
                   'as well as     <bbox rarrow>  and other bbox shapes',
                   highlight_colors=['w', 'orange', '#696969'],
                                   {'foreground': 'firebrick', 'linewidth': 5},
                                   {'foreground': '#f0f0f0', 'linewidth': 1.5}],
                   bbox_kws=[{'facecolor':'r', 'alpha': 0.5, 'pad': 1.5},
                               {'edgecolor': 'SkyBlue', 'facecolor': '#08519c', 'boxstyle': 'larrow', 'linewidth': 2.5}],


Make sure to set data limits and if used call plt.tight_layout() before using the ax_text function. Otherwise the data transformation will not show properly.


pip install highlight-text



x: x position with left alignment
y: y position
s: text including highlighted substrings color: textcolor of unhighlighted text
highlight_colors: list of highlight colors
highlight_weights = ['regular']: the fontweight used for highlighted text
highlight_styles = ['normal']: the fontstyle used for highlighted text
fontweight = 'regular': the fontweight used for normal text
fontstyle = 'normal': the fontstyle used for normal text
delim = ['<', '>']: delimiters to enclose the highlight substrings
va = 'bottom', textalignment has to be in ['bottom', 'top', 'center']
ha = 'left', textalignment has to be in ['left', 'right', 'center']
hpadding = 0: extra padding between highlight and normal text
linespacing = 0.25: linespacing in factor of font height between rows
**kwargs: figure.text | plt.text kwargs
[ax: axes to draw the text onto (in case of ax_text)]
[fig: figure(in case of fig_text)]


a list of texts

Alt Text

Project details

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Files for highlight-text, version 0.1
Filename, size File type Python version Upload date Hashes
Filename, size highlight_text-0.1-py3-none-any.whl (8.7 kB) File type Wheel Python version py3 Upload date Hashes View
Filename, size highlight_text-0.1.tar.gz (7.2 kB) File type Source Python version None Upload date Hashes View

Supported by

Pingdom Pingdom Monitoring Google Google Object Storage and Download Analytics Sentry Sentry Error logging AWS AWS Cloud computing DataDog DataDog Monitoring Fastly Fastly CDN DigiCert DigiCert EV certificate StatusPage StatusPage Status page