Skip to main content

PyTorch implementation of HighRes3DNet

Project description

highresnet

https://img.shields.io/pypi/v/highresnet.svg https://img.shields.io/travis/fepegar/highresnet.svg https://zenodo.org/badge/DOI/10.5281/zenodo.3349989.svg Documentation Status Updates
$ NII_FILE=`download_oasis`
$ deepgif $NII_FILE
3D Slicer screenshot

PyTorch implementation of HighRes3DNet from Li et al. 2017, *On the Compactness, Efficiency, and Representation of 3D Convolutional Networks: Brain Parcellation as a Pretext Task*.

All the information about how the weights were ported from NiftyNet can be found in my submission to the MICCAI Educational Challenge 2019.

Usage

Command line interface

(deepgif) $ deepgif t1_mri.nii.gz
Using cache found in /home/fernando/.cache/torch/hub/fepegar_highresnet_master
100%|███████████████████████████████████████████| 36/36 [01:13<00:00,  2.05s/it]

PyTorch Hub

If you are using pytorch>=1.1.0, you can import the model directly from this repository using PyTorch Hub.

>>> import torch
>>> repo = 'fepegar/highresnet'
>>> model_name = 'highres3dnet'
>>> print(torch.hub.help(repo, model_name))
    "HighRes3DNet by Li et al. 2017 for T1-MRI brain parcellation"
    "pretrained (bool): load parameters from pretrained model"
>>> model = torch.hub.load(repo, model_name, pretrained=True)
>>>

Installation

2. Install PyTorch and highresnet

Within the conda environment:

pip install pytorch highresnet

Now you can do

>>> from highresnet import HighRes3DNet
>>> model = HighRes3DNet(in_channels=1, out_channels=160)
>>>

Credits

This package was created with Cookiecutter and the audreyr/cookiecutter-pypackage project template.

History

0.7.1 (2019-11-05)

  • First release on PyPI.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

highresnet-0.10.2.tar.gz (19.6 kB view details)

Uploaded Source

Built Distribution

highresnet-0.10.2-py2.py3-none-any.whl (17.0 kB view details)

Uploaded Python 2 Python 3

File details

Details for the file highresnet-0.10.2.tar.gz.

File metadata

  • Download URL: highresnet-0.10.2.tar.gz
  • Upload date:
  • Size: 19.6 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.1.1 pkginfo/1.5.0.1 requests/2.23.0 setuptools/45.2.0 requests-toolbelt/0.9.1 tqdm/4.43.0 CPython/3.7.1

File hashes

Hashes for highresnet-0.10.2.tar.gz
Algorithm Hash digest
SHA256 938841caf10306e3bf429e6cb174dc8135b3aaff64967d395151ea8058f23565
MD5 f058c90b5fc4f7131cf9c9bb9a3fdac1
BLAKE2b-256 cdd8f4330e112607a436ff3c0709825f36fb245cbf24ff1b2a81f433810dbcaf

See more details on using hashes here.

File details

Details for the file highresnet-0.10.2-py2.py3-none-any.whl.

File metadata

  • Download URL: highresnet-0.10.2-py2.py3-none-any.whl
  • Upload date:
  • Size: 17.0 kB
  • Tags: Python 2, Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.1.1 pkginfo/1.5.0.1 requests/2.23.0 setuptools/45.2.0 requests-toolbelt/0.9.1 tqdm/4.43.0 CPython/3.7.1

File hashes

Hashes for highresnet-0.10.2-py2.py3-none-any.whl
Algorithm Hash digest
SHA256 451b1134868c9d648e8c531bf9bf4c0f2274df90834bb52b245255710192e016
MD5 4ed8389bb2055d2f98d521b992ae09b2
BLAKE2b-256 58b61910770261403d95acc22124e358d1ec40fc34d4f235caaab0d73948e564

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page