Skip to main content

Download FX/commodities data (M1, Tick) from histdata.com.

Project description

FX 1-Minute Dataset (+ Crude Oil and Stock indexes e.g. SP500)

API and dataset download for histdata.com.

Download the dataset

pip install -r requirements.txt
python download_all_fx_data.py

Expect it to take around 10 minutes if you have a fast internet connection.

API

Downloads Downloads

pip install histdata

Examples

from histdata import download_hist_data as dl
from histdata.api import Platform as P, TimeFrame as TF
  • Download tick data for 2019/06:
dl(year='2019', month='6', pair='eurusd', platform=P.GENERIC_ASCII, time_frame=TF.TICK_DATA)
  • Other possible calls:
dl(year='2019', month='6', pair='eurusd', platform=P.NINJA_TRADER, time_frame=TF.TICK_DATA_LAST)
dl(year='2019', month='6', pair='eurusd', platform=P.NINJA_TRADER, time_frame=TF.TICK_DATA_ASK)
dl(year='2019', month='6', pair='eurusd', platform=P.NINJA_TRADER, time_frame=TF.TICK_DATA_BID)
dl(year='2019', month='6', pair='eurusd', platform=P.NINJA_TRADER, time_frame=TF.ONE_MINUTE)
dl(year='2019', month='6', pair='eurusd', platform=P.GENERIC_ASCII, time_frame=TF.TICK_DATA)
dl(year='2019', month='6', pair='eurusd', platform=P.EXCEL, time_frame=TF.ONE_MINUTE)
dl(year='2019', month='6', pair='eurusd', platform=P.META_TRADER, time_frame=TF.ONE_MINUTE)
dl(year='2019', month='6', pair='eurusd', platform=P.META_STOCK, time_frame=TF.ONE_MINUTE)
dl(year='2018', month='6', pair='eurusd', platform=P.NINJA_TRADER, time_frame=TF.TICK_DATA_LAST)
dl(year='2018', month='6', pair='eurusd', platform=P.NINJA_TRADER, time_frame=TF.TICK_DATA_ASK)
dl(year='2018', month='6', pair='eurusd', platform=P.NINJA_TRADER, time_frame=TF.TICK_DATA_BID)

Data specification

This repository contains:

  • A dataset of all the FX prices (1-minute data) from 2000, in Generic ASCII.
    • More than 66 FX pairs
  • Contains some commodities:
    • WTI/USD = WEST TEXAS INTERMEDIATE in USD
    • BCO/USD = BRENT CRUDE OIL in USD
  • Contains some indexes:
    • SPX/USD = S&P 500 in USD
    • JPX/JPY = NIKKEI 225 in JPY
    • NSX/USD = NASDAQ 100 in USD
    • FRX/EUR = FRENCH CAC 40 in EUR
    • UDX/USD = US DOLLAR INDEX in USD
    • UKX/GBP = FTSE 100 in GBP
    • GRX/EUR = DAX 30 in EUR
    • AUX/AUD = ASX 200 in AUD
    • HKX/HKD = HAN SENG in HKD E - TX/EUR = EUROSTOXX 50 in EUR
  • A set of functions to download the historical prices yourself.

All the data is retrieved from: http://www.histdata.com/

Any file in a dataset is zipped and contains:

  • a CSV (semicolon separated file).
  • a status report (containing some meta data such as gaps).

Any CSV file looks like this:

20120201 000000;1.306600;1.306600;1.306560;1.306560;0
20120201 000100;1.306570;1.306570;1.306470;1.306560;0
20120201 000200;1.306520;1.306560;1.306520;1.306560;0
20120201 000300;1.306610;1.306610;1.306450;1.306450;0
20120201 000400;1.306470;1.306540;1.306470;1.306520;0
[...]

Headers are not included in the CSV files. They are:

DateTime Stamp;Bar OPEN Bid Quote;Bar HIGH Bid Quote;Bar LOW Bid Quote;Bar CLOSE Bid Quote;Volume

DateTime Stamp

Format: YYYYMMDD HHMMSS

Legend:

  • YYYY – Year
  • MM – Month (01 to 12)
  • DD – Day of the Month
  • HH – Hour of the day (in 24h format)
  • MM – Minute
  • SS – Second, in this case it will be always 00

TimeZone: Eastern Standard Time (EST) time-zone WITHOUT Day Light Savings adjustments

OPEN Bid Quote

The open (first) bid quote of the 1M bin.

HIGH Bid Quote

The highest bid quote of the 1M bin.

LOW Bid Quote

The lowest bid quote of the 1M bin.

CLOSE Bid Quote

The close (last) bid quote of the 1M bin.

Volume

Number of lots. Looks like it's always 0.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

histdata-1.1.tar.gz (8.7 kB view details)

Uploaded Source

Built Distribution

histdata-1.1-py3-none-any.whl (9.2 kB view details)

Uploaded Python 3

File details

Details for the file histdata-1.1.tar.gz.

File metadata

  • Download URL: histdata-1.1.tar.gz
  • Upload date:
  • Size: 8.7 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.9.10

File hashes

Hashes for histdata-1.1.tar.gz
Algorithm Hash digest
SHA256 e840ea10b9242210509c1bd61e853cd7308c87bb517021453332d777bd54f034
MD5 e407a440c2b12e5893148e25d8aedd09
BLAKE2b-256 fbdf266581195350ee915f57dc896668026566347f6d56b7bf75b5d596de8dea

See more details on using hashes here.

File details

Details for the file histdata-1.1-py3-none-any.whl.

File metadata

  • Download URL: histdata-1.1-py3-none-any.whl
  • Upload date:
  • Size: 9.2 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.9.10

File hashes

Hashes for histdata-1.1-py3-none-any.whl
Algorithm Hash digest
SHA256 4cc034c20f243be04b81aedbd04769085b5b4e25f047ebb18d3b7f9ced82050e
MD5 38a80b5238daa166cae4f12600ad9e5c
BLAKE2b-256 d4150daad2ad5896dd47213f7269ae47dcc97e362cf194e911d147e5965b01fd

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page