Skip to main content

A Multi-threaded/Multi-Process command-line utility and python package that downloads currency exchange rates from Histdata.com. Imports to InfluxDB. Can be used in Jupyter Notebooks.

Project description

histdata.com-tools

A Multi-threaded/Multi-Process command-line utility and python package that downloads currency exchange rates from Histdata.com. Imports to InfluxDB. Can be used in Jupyter Notebooks. Works on MacOS, Linux & Windows Systems. Requires Python3.10+

NEW: Expanded API support!!!

Downloads PyPI - License PyPI PyPI - Status



Disclaimer

*I am in no way affiliated with histdata.com or its maintainers. Please use this application in a way that respects the hard work and resources of histdata.com

If you choose to use this tool, it is strongly suggested that you head over to http://www.histdata.com/download-by-ftp/ and sign up to help support their traffic costs.

If you find this tool helpful and would like to support future development, I'm in need of caffeine, feel free to buy me coffee!


Usage

Note #1 The number one rule when using this tool is to be MORE specific with your input to limit the size of your request.

Note #2 histdatacom is a very powerful tool and has the capability to fetch the entire repository housed on histdata.com. This is NEVER necessary. If you are using this tool to fetch data for your favorite trading application, do not download data in all available formats.

It is likely the default behavior will be modified from its current state to discourage unnecessarily large requests.

*please submit feature requests and bug reports using this repository's issue tracker.

Show the help and options

histdatacom -h
histdatacom -h
usage: histdatacom [-h] [-A] [-U] [--by BY] [--version] [-V] [-D] [-X] [-p PAIR [PAIR ...]] [-f FORMAT [FORMAT ...]] [-t TIMEFRAME [TIMEFRAME ...]] [-s START_YEARMONTH] [-e END_YEARMONTH] [-I] [-d] [-b BATCH_SIZE] [-c CPU_UTILIZATION]
                   [--data-directory DATA_DIRECTORY]

options:
  -h, --help            show this help message and exit

Mode:
  -V, --validate_urls   Check generated list of URLs as valid download locations
  -D, --download_data_archives
                        download specified pairs/formats/timeframe and create data files
  -X, --extract_csvs    histdata.com delivers zip files. Use the -X flag to extract them.

Config:
  -p PAIR [PAIR ...], --pairs PAIR [PAIR ...]
                        space separated currency pairs. e.g. -p eurusd usdjpy ...
  -f FORMAT [FORMAT ...], --formats FORMAT [FORMAT ...]
                        space separated formats. -f metatrader ascii ninjatrader metastock
  -t TIMEFRAME [TIMEFRAME ...], --timeframes TIMEFRAME [TIMEFRAME ...]
                        space separated Timeframes. -t tick-data-quotes 1-minute-bar-quotes
  -s START_YEARMONTH, --start_yearmonth START_YEARMONTH
                        set a start year and month for data. e.g. -s 2000-04 or -s 2015-00
  -e END_YEARMONTH, --end_yearmonth END_YEARMONTH
                        set a start year and month for data. e.g. -e 2020-00 or -e 2022-04

Influxdb:
  -I, --import_to_influxdb
                        import data to influxdb instance. Use influxdb.yaml to configure.
  -d, --delete_after_influx
                        delete data files after upload to influxdb
  -b BATCH_SIZE, --batch_size BATCH_SIZE
                        (integer) influxdb write_api batch size. defaults to 5000

System:
  -c CPU_UTILIZATION, --cpu_utilization CPU_UTILIZATION
                        "low", "medium", "high". High uses all available CPUs OR integer percent 1-200
  --data-directory DATA_DIRECTORY
                        Directory Used to save data. default is "./data/"

Info:
  -A, --available_remote_data
                        list data retrievable from histdata.com
  -U, --update_remote_data
                        update list of data retrievable from histdata.com
  --by BY               With -A, -U, to sort --by [pair_asc, pair_dsc, start_asc, start_dsc]
  --version             return current version of histdatacom.

Basic Use

Download and extract the current month's available EURUSD data for metatrader 4/5into the default data directory ./data

histdatacom -p eurusd -f metatrader -s now

include the -D flag to download but NOT extract to csv

histdatacom -D -p usdcad -f metastock -s now

Available Formats

The formats available are:

metatrader
metastock
ninjatrader
excel
ascii

histdata.com provides different resolutions of time depending on the format.

The following format/timeframe combinations are available:

1-minute-bar-quotes all formats
tick-data-quotes ascii
tick-last-quotes ninjatrader
tick-bid-quotes ninjatrader
tick-ask-quotes ninjatrader
CSV Dialect and Format Specifications
To download 1-minute-bar-quotes for both metastock and excel
histdatacom -p usdjpy -f metastock excel -s now 

Date Ranges

date ranges are for year and month and can be specified in the following ways:

[ -._]
2022-04
"2202 04"
2202.04
2202_04
to fetch a single year's data, leave out the month
  • note: unless you're fetching data for the current year, tick data types will fetch 12 files for each month of the year, 1-minute-bar-quotes will fetch a single OHLC file with the whole year's data.
histdatacom -p udxusd -f ascii -t tick-data-quotes -s 2011
to fetch a single month's data, include a month, but do not use the -e, --end_yearmonth flag
  • if you're requesting 1-minute-bar-quotes for any year except the current year, you will receive the the whole year's data
  • this example leaves out the -p --pair flag, and will fetch data for all 66 available instruments
histdatacom -f metatrader -s 2012-07

Start & Now Keywords

you may have noticed that two special year-month keywords exist start and now

  • start may only be used with the -s --start_yearmonth flag and the -e --end_yearmonth flag must be specified to indicate a range of data
histdatacom -p audusd -f metatrader -s start -e 2008-12
  • now used alone will return the current year-month
  • when used with as -s now it will return the most current month's data
histdatacom -p frxeur -f ninjatrader -s now

in the above example, no -t --timeframe flag was specified. This will return all time resolutions available for the specified format(s)

now when used with the -e --end_yearmonth flag is intended to be the end of a range. Rather, if the flags were to be -s 2019-04 -e now the request would return data from April 2019-04 to the present.

histdatacom -p xagusd -f ascii -1-minute-bar-quotes -s 2019-04 -e now

Multiple Datasets
multiple datasets can be requested in one command

this example with use the -e --end_yearmonth flag to request a range of data for multiple instruments.

  • note: Large requests like these are to be avoided. remember to sign up with histdata.com to help them pay for network costs
histdatacom -p eurusd usdcad udxusd -f metatrader -s start -e 2017-04

CPU Utilization

One can set a cap on CPU Utilization with -c --cpu_utilization

  • available levels are, "low","medium","high"
  • OR
  • integer percent 1-200 eg. -c 100 is equal to -c high
histdatacom -c medium -p udxusd -f metatrader -s 2015-04 -e 2016-04

Import to InfluxDB

To import data to an influxdb instance, use the -I --import_to_influxdb flag along with an influxdb.yaml file in the current working directory (where ever you are running the command from).

  • ascii is the only format accepted for influxdb import.
  • all histdata.com datetime data is in EST (Eastern Standard Time) with no adjustments for daylight savings.
  • Influxdb does not adjust for timezone and all datetime data is recorded as UTC epoch timestamps (nano-seconds since midnight 00:00, January, 1st, 1970)
  • this tool converts histdata.com ESTnoDST to UTC Epoch milli-second timestamps as part of the import-to-influx process
histdatacom -I -p eurusd -f ascii -t tick-data-quotes -s start -e now

influxdb.yaml

# a sample influxdb.yaml file.
influxdb:
  org: influx_org
  bucket: data_bucket
  url: influx_server_api_url
  token: influx_user_token
Download influxdb.yaml to your project's directory
curl "https://raw.githubusercontent.com/dmidlo/histdata.com-tools/main/influxdb.sample.yaml" --output influxdb.yaml

API - Other Scripts, Modules, & Jupyter Support

histdatacom also has an API to allow developers and to integrate the package into their own projects. It can be used in one of two ways; The first being a simple interface to automate CLI interaction. The second is as an interface to work with the data directly in a notebook environment like Jupyter Notebooks.


CLI Automation

First import the required modules
import histdatacom
from histdatacom.options import Options
Create and Initialize a new options object to pass parameters to histdatacom
options = Options()
Configure for CLI automation

To automate the CLI, simply include one of the boolean behavior flags: options.validate_urls, options.download_data_archives, options.extract_csvs, and options.import_to_influxdb

  • Each behavior flag implies the use of the preceding flags.
    • histdatacom is an ETL pipeline (extract, transform, load) and each step depends on the preceding steps in the pipeline.
    • For the CLI, the order of operations are:
      • validate urls
      • download zip files from histdata.com
      • extract the csv from the zip archive
      • transform the ESTnoDST datetime to UTC Epoch AND upload to InfluxDB.
# options.validate_urls = True
# options.download_data_archives = True  # implies validate
options.extract_csvs = True  # implies validate and download
# options.import_to_influxdb = True  # implies validate, download, and extract
options.formats = {"ascii"}
options.timeframes = {"tick-data-quotes"}
options.pairs = {"eurusd"}
options.start_yearmonth = "2021-04"
options.end_yearmonth = "now"
options.cpu_utilization = 100
  • when a behavior flag is included, histdatacom assumes it is being used for CLI automation exclusively and does not provide a return value.

at present, calling from another script or module is limited to using the __name__=="__main__" idiom.

if __name__=="__main__": 
   histdatacom(options)

Jupyter may be used normally

histdatacom(options)  # (Jupyter)

Jupyter and External Scripts

As opposed to the CLI interface, one may wish to load data from histdata.com and work with it interactively (e.g. in a Jupyter notebook), or as part of a larger pipeline. To that end, histdatacom provides an option to specify a return type.

  • return types can be:

    • A datatable Frame
    • a pandas dataframe
    • in Apache arrow in-memory format
  • to use pandas or arrow formats you must install the required packages

    • pip install pandas
    • pip install pyarrow
  • All datetime is returned as milliseconds since January 1, 1970 (midnight UTC/GMT)

Import the required modules
import histdatacom
from histdatacom.options import Options
Initialize a new options object to pass parameters to histdatacom
options = Options()
Jupyter & External Script Options
options.api_return_type = "pandas"  # "datatable", "pandas", or "arrow"
options.formats = {"ascii"}  # Must be {"ascii"}
options.timeframes = {"tick-data-quotes"}  # can be tick-data-quotes or 1-minute-bar-quotes
options.pairs = {"eurusd"}
options.start_yearmonth = "2021-04"
options.end_yearmonth = "now"
options.cpu_utilization = "high"
  • This example uses just one pair/instrument/symbol eurusd and just one timeframe tick-data-quotes. When the api is called with this 'one-one` specificity, the api will directly return the requested data.
  • Regardless of the specified start_yearmonth and end_yearmonth, the resultant data will be sorted and merged into a single dataset.
Pass the options to histdatacom and assign the return to a variable
data = histdatacom(options)  # (Jupyter)

print(data)
print(type(data))
              datetime      bid      ask  vol
0         1617253200478  1.17243  1.17244    0
1         1617253206261  1.17246  1.17248    0
2         1617253206362  1.17247  1.17249    0
3         1617253206946  1.17247  1.17250    0
4         1617253207121  1.17249  1.17250    0
...                 ...      ...      ...  ...
18648493  1650664783081  1.07968  1.08042    0
18648494  1650664783182  1.07968  1.08039    0
18648495  1650664790108  1.07964  1.08032    0
18648496  1650664790958  1.07947  1.08032    0
18648497  1650664794462  1.07947  1.08032    0

[18648498 rows x 4 columns]
<class 'pandas.core.frame.DataFrame'>
  • When specifying more than one pair/symbol/instrument or timeframe, the api will return an list of dictionaries with references to the timeframe, pair, records used to create the data, and the merged data itself.
options.api_return_type = "pandas"
options.formats = {"ascii"}
options.timeframes = {"1-minute-bar-quotes"}
options.pairs = {"eurusd","usdcad"}
options.start_yearmonth = "2021-01"
options.end_yearmonth = "now"
options.cpu_utilization = "75"
data = histdatacom(options)  # (Jupyter)

print(data)
print(type(data))
[
  {
    'timeframe': 'M1', 
    'pair': 'EURUSD', 
    'records': [<histdatacom.records.Record object ...>, ...],
    'data':    
                    datetime     open     high      low    close  vol
      0       1609711200000  1.22396  1.22396  1.22373  1.22395    0
      1       1609711260000  1.22387  1.22420  1.22385  1.22395    0
      2       1609711320000  1.22396  1.22398  1.22382  1.22382    0
      3       1609711380000  1.22383  1.22396  1.22376  1.22378    0
      4       1609711440000  1.22378  1.22385  1.22296  1.22347    0
      ...               ...      ...      ...      ...      ...  ...
      484172  1650664440000  1.07976  1.08014  1.07976  1.08014    0
      484173  1650664500000  1.08013  1.08021  1.07997  1.08000    0
      484174  1650664560000  1.08000  1.08000  1.07956  1.07968    0
      484175  1650664620000  1.07980  1.07980  1.07958  1.07968    0
      484176  1650664680000  1.07980  1.07986  1.07963  1.07963    0

      [484177 rows x 6 columns]
  }, 
  {
    'timeframe': 'M1', 
    'pair': 'USDCAD',
    'records': [<histdatacom.records.Record object ...>, ...],
    'data':                
                    datetime     open     high      low    close  vol
      0       1609711200000  1.27136  1.27201  1.27136  1.27201    0
      1       1609711260000  1.27207  1.27241  1.27207  1.27220    0
      2       1609711320000  1.27211  1.27219  1.27211  1.27219    0
      3       1609711380000  1.27212  1.27261  1.27212  1.27261    0
      4       1609711440000  1.27268  1.27268  1.27261  1.27261    0
      ...               ...      ...      ...      ...      ...  ...
      483946  1650664440000  1.27121  1.27132  1.27114  1.27131    0
      483947  1650664500000  1.27129  1.27137  1.27102  1.27106    0
      483948  1650664560000  1.27107  1.27114  1.27098  1.27101    0
      483949  1650664620000  1.27105  1.27105  1.27091  1.27091    0
      483950  1650664680000  1.27091  1.27097  1.27073  1.27097    0

      [483951 rows x 6 columns]
  }
]

<class 'list'>
print(data[0]['timeframe'], data[0]['pair'])
print(data[0]['data'])
print(type(data[0]['data']))
M1 EURUSD
               datetime     open     high      low    close  vol
0       20210103 170000  1.22396  1.22396  1.22373  1.22395    0
1       20210103 170100  1.22387  1.22420  1.22385  1.22395    0
2       20210103 170200  1.22396  1.22398  1.22382  1.22382    0
3       20210103 170300  1.22383  1.22396  1.22376  1.22378    0
4       20210103 170400  1.22378  1.22385  1.22296  1.22347    0
...                 ...      ...      ...      ...      ...  ...
484172  20220422 165400  1.07976  1.08014  1.07976  1.08014    0
484173  20220422 165500  1.08013  1.08021  1.07997  1.08000    0
484174  20220422 165600  1.08000  1.08000  1.07956  1.07968    0
484175  20220422 165700  1.07980  1.07980  1.07958  1.07968    0
484176  20220422 165800  1.07980  1.07986  1.07963  1.07963    0

[484177 rows x 6 columns]
<class 'pandas.core.frame.DataFrame'>

at present, calling from another script or module is limited to using the __name__=="__main__" idiom.

if __name__=="__main__": 
   histdatacom(options)

Jupyter may be used normally

histdatacom(options)  # (Jupyter)
Full Script Example
import histdatacom
from histdatacom.options import Options
from histdatacom.fx_enums import Pairs

def import_pair_to_influx(pair, start, end):
    data_options = Options()

    data_options.import_to_influxdb = True  # implies validate, download, and extract
    data_options.delete_after_influx = True
    data_options.batch_size = "2000"
    data_options.cpu_utilization = "high"

    data_options.pairs = {f"{pair}"}# histdata_and_oanda_intersect_symbs
    data_options.start_yearmonth = f"{start}"
    data_options.end_yearmonth = f"{end}"
    data_options.formats = {"ascii"}  # Must be {"ascii"}
    data_options.timeframes = {"tick-data-quotes"}  # can be tick-data-quotes or 1-minute-bar-quotes
    histdatacom(data_options)

def get_available_range_data(pairs):
    range_options = Options()
    range_options.pairs = pairs
    range_options.available_remote_data = True
    range_options.by = "start_dsc"
    range_data = histdatacom(range_options)  # (Jupyter)
    return range_data

def print_one_datatable_frame(pair, start=None, end=None):
    options = Options()
    options.api_return_type = "datatable"
    options.pairs = {f"{pair}"}
    options.start_yearmonth = "201501"
    options.formats = {"ascii"}
    options.timeframes = {"tick-data-quotes"}
    return histdatacom(options)

def main():
    histdata_symbs = Pairs.list_keys()
    
    # Oanda Symbols:
    oanda_symbs = {"audcad","audchf","audhkd","audjpy","audsgd","audusd","cadhkd","cadjpy","cadsgd",
    "chfhkd","chfjpy","euraud","eurcad","eurchf","eurgbp","eurhkd","eurjpy","eursgd","eurusd","gbpaud",
    "gbpcad","gbpchf","gbphkd","gbpjpy","gbpsgd","gbpusd","hkdjpy","sgdchf","sgdhkd","sgdjpy","usdcad",
    "usdchf","usdhkd","usdjpy","usdsgd","audnzd","cadchf","chfzar","eurczk","eurdkk","eurhuf","eurnok",
    "eurnzd","eurpln","eursek","eurtry","eurzar","gbpnzd","gbppln","gbpzar","nzdcad","nzdchf","nzdhkd",
    "nzdjpy","nzdsgd","nzdusd","tryjpy","usdcnh","usdczk","usddkk","usdhuf","usdmxn","usdnok","usdpln",
    "usdsar","usdsek","usdthb","usdtry","usdzar","zarjpy"}

    histdata_and_oanda_intersect_symbs = histdata_symbs & oanda_symbs

    pairs_data = get_available_range_data(histdata_and_oanda_intersect_symbs)
    for pair in pairs_data:
        start = pairs_data[pair]['start']
        end = pairs_data[pair]['end']
        
        import_pair_to_influx(pair, start, end)

if __name__ == '__main__':
    main()

Setup

TLDR for all platforms


Install the latest version of datatable

  • *this is a temporary fix until the datatable team updates PyPi. See this issue for more details

check out the section: Data Table Installation Options to either:


Install histdatacom

pip install histdatacom

to install latest development version

pip install git+https://github.com/dmidlo/histdata.com-tools.git

Vanilla MacOS and Linux

Create a new project directory and change to it
mkdir myproject && cd myproject && pwd
Create a Python Virtual Environment and activate it
python -m venv venv && source venv/bin/activate
Confirm Python Path and Version
which python && python --version
Build the latest version of datatable

follow the instructions from Install the latest version of datatable

Install the histdata.com-tools package from PyPi
pip install histdatacom
Run histdatacom to view help message and Options
histdatacom -h

Vanilla Windows Powershell

Launch a Powershell Terminal
  • Run as Administrator (right-click on shortcut and click Run as Admin...)
Make sure python3.10 is in your system's executable path
python --version
  • should be already set if you clicked the checkbox when installing python 3.10
  • If not, you can run the following.
    • you will need to relaunch powershell as admin.
[Environment]::SetEnvironmentVariable("Path", "$env:Path;C:\Program Files\Python310")
Change the Execution Policy to Unrestricted
Set-ExecutionPolicy Unrestricted -Force
Create a new directory and change to it
New-Item -Path ".\" -Name "myproject" -ItemType "directory"; Set-Location .\myproject\
Create a Virtual Environment and activate it
python -m venv venv; .\venv\Scripts\Activate.ps1
Confirm Path and Version
Get-Command python | select Source; python --version
Build the latest version of datatable

follow the instructions from Install the latest version of datatable

Install histdata.com-tools package from PyPi
pip install histdatacom
Run histdatacom to view help message
histdatacom -h

Anaconda Setup


Anaconda MacOS and Linux
Create a Project Directory and Change to it
mkdir myproject && cd myproject && pwd
Create a Python 3.10 Anaconda environment with conda and activate it
conda create -n py310 python=3.10 && conda activate py310
Check Python Path and Version
which python && python --version
Build the latest version of datatable

follow the instructions from Install the latest version of datatable

Install histdatacom package from PyPi
pip install histdatacom
Run histdatacom package to view help message
histdatacom -h

Anaconda Windows using the Anaconda Prompt
Create a Directory and Change to it
mkdir myproject && cd myproject && echo %cd%
Create a Python 3.10 Anaconda environment with conda and activate it
conda create -n py310 python=3.10 && conda activate py310
Check Python Path and Version
where python && python --version
Build the latest version of datatable

follow the instructions from Install the latest version of datatable

Install histdatacom package from PyPi
pip install histdatacom
Run histdatacom package to view help message
histdatacom -h

Datatable Installation Options


Install from Appveyor

Build wheels are pre-compiled versions of datatable, and would easily be the preferred route of installation while we wait for the datatable team to provide an official Python 3.10 package on PyPi. The only drawback is documenting the procedure as the wheel's URL expires monthly thus this documentation could go out of date rather quickly...

Activate Python Environment if you're using one

refer to the Create a Python Virtual Environment and activate it steps outlined for your platform

Get the Build Wheel's URL for your platform

To find the latest build wheels for datatable, go to dataable's Appveyor CI/CD Instance:

  • Select the Platform you're installing for:
    • image
  • Select "Artifacts" and right/option-click on the filename that contains cp310. e.g. dist\datatable-1.1.0a2157-cp310-cp310-win_amd64.whl
  • Select "Copy Link Address" from your browser's context menu to copy the wheel's URL
    • image
Install datatable using pip with the wheel's URL from Appveyor

e.g. pip install {https://APPVEYOR DATATABLE BUILD WHEEL URL.whl}


Build from Source

  • You will need a C++ compiler installed to build datatable from source

MacOS XCode Command Line Tools
  • For MacOS, run xcode-select --install from your terminal and confirm the prompts for download and installation of the xcode command-line tools.

Windows MSVC C++ Compiler
  • For Windows, you need to download and install the Visual Studio Community Edition and choose the option Desktop Development with C++, then select install.

Launch the Visual Studio command line environment (for Windows only)
  • Open either a powershell, cmd, or Anaconda Prompt terminal
    • the setup scripts for the VS CLI environments are located in the .\Common7\Tools\ directory of your Visual Studio installation directory
      • e.g. "C:\Program Files\Microsoft Visual Studio\2022\Community\Common7\Tools\"
  • Run the VS CLI environment setup script
    • for Powershell:
      • PS> "C:\Program Files\Microsoft Visual Studio\2022\Community\Common7\Tools\Launch-VsDevShell.ps1"
    • for CMD and Anaconda Prompt:
      • > "C:\Program Files\Microsoft Visual Studio\2022\Community\Common7\Tools\LaunchDevCmd.bat"

Tell the datatable setup where to find the MSVC C++ compiler
  • for Powershell:
    • PS> $env:DT_MSVC_PATH="$env:VSINSTALLDIR"+"VC\Tools\MSVC\"
  • for CMD and Anaconda Prompt:
    • set DT_MSVC_PATH=%VSINSTALLDIR%VC\Tools\MSVC\

Return to Your Project's Directory

The Visual Studio command line environment setup scripts change your directory, you'll need to find your way back to your project's directory. I like to use the variable %USERPROFILE% to save myself some typing:

e.g. > cd %USERPROFILE%\Documents\projects\myproject


Activate Python Environment if you're using one

refer to the Create a Python Virtual Environment and activate it steps outlined for your platform


Install datatable
pip install git+https://github.com/h2oai/datatable

Roadmap

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

histdatacom-0.78.4.tar.gz (61.1 kB view details)

Uploaded Source

Built Distribution

histdatacom-0.78.4-py2.py3-none-any.whl (49.7 kB view details)

Uploaded Python 2 Python 3

File details

Details for the file histdatacom-0.78.4.tar.gz.

File metadata

  • Download URL: histdatacom-0.78.4.tar.gz
  • Upload date:
  • Size: 61.1 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.10.9

File hashes

Hashes for histdatacom-0.78.4.tar.gz
Algorithm Hash digest
SHA256 6f152839622b05e21b331827c60bce9d6d3c88e542d6e69baa4c0857c15878a2
MD5 813b6355b67fb32ba1dd6c9f392b8724
BLAKE2b-256 4904fb40838082ffd5b716162f647db5170fae6c471e6c0a212ff8ecb4d5edf4

See more details on using hashes here.

File details

Details for the file histdatacom-0.78.4-py2.py3-none-any.whl.

File metadata

File hashes

Hashes for histdatacom-0.78.4-py2.py3-none-any.whl
Algorithm Hash digest
SHA256 63b175f75f840c12035edff476fa2d5c4dd6c858a3696c2c16829aa0bb6108cb
MD5 e2e7fa972ef5cd322d06d1919aff1bcf
BLAKE2b-256 2a602e4b8cfafdd2584a730ba1f9b7f3042158d74766cb211fb1f3f48bc10a36

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page