Skip to main content
This is a pre-production deployment of Warehouse. Changes made here affect the production instance of PyPI (pypi.python.org).
Help us improve Python packaging - Donate today!

A small program to analysis 1 dimensional data

Project Description
Histogramy
=============================================================================

Histogramy is a CUI program to analyze 1-dimensional data.

It draw a histogram with specified data and it also can draw the fitting curve
estimated by a Gaussian Mixture Model probability distribution.

![Screenshot](https://raw.github.com/lambdalisue/Histogramy/master/static/screenshot.png)

Requirements
-----------------------------------------------------------------------------

- [Python][]
- [numpy][]
- [matplotlib][]
- [scikit-learn][]

[Python]: http://www.python.org/
[numpy]: http://www.numpy.org/
[matplotlib]: http://matplotlib.org/
[scikit-learn]: http://scikit-learn.org/dev/index.html


Install
-----------------------------------------------------------------------------

1. You have to install [Python][]. Follow the instruction at
http://www.python.org/getit/

2. You also have to instal [numpy][], and [matplotlib][].
Follow the instructions below

1. numpy: http://docs.scipy.org/doc/numpy/user/install.html
2. matplotlib: http://matplotlib.org/users/installing.html

3. Now, you can install Histogramy with [pip][] or [easy_install][].
[scikit-learn][] will be installed automatically when you install
Histogramy

1. Install [pip][] or [easy_install][], follow the instrcutions below

- pip: http://www.pip-installer.org/en/latest/installing.html
- easy_install: http://pypi.python.org/pypi/setuptools

2. Install Histogramy with the following command in Terminal (Command
Prompt)

~~~
pip install histogramy
~~~

or

~~~
easy_install histogramy
~~~

[pip]: http://www.pip-installer.org/
[easy_install]: http://pypi.python.org/pypi/setuptools


Usage
-----------------------------------------------------------------------------

usage: histogramy [-h] [-b BINS] [-c N] [-C N] [--base BASE] [--auto-base]
[--min-threshold MIN] [--max-threshold MAX]
[--covariance-type TYPE] [--min-covar MIN_COVAR]
[--delimiter DELIMITER] [--encoding ENCODING] [--demo]
[filenames [filenames ...]] {histogram,fit,plot} ...

positional arguments:
filenames
{histogram,fit,plot}
histogram Show histogram data
fit Show fitting data
plot Create graph by matplotlib

optional arguments:
-h, --help show this help message and exit
-b BINS, --bins BINS It defines the number of equal-width bins.
-c N, --column N A number of column in data file used for analysis
-C N, --classifiers N
The maximum number classifiers to simulate the fitting
--base BASE Base value to modulate the data
--auto-base Automatically find the base value to modulate the data
--min-threshold MIN Minimum threshold. Value smaller than this will be
ignored
--max-threshold MAX Maximum threshold. Value grater than this will be
ignored
--covariance-type TYPE
Type of covariance. Default is "diag"
--min-covar MIN_COVAR
Minimum value of covariance
--delimiter DELIMITER
Delimiter used to parse the data file
--encoding ENCODING Encoding used to open the data file
--demo Use demo data to analysis
Release History

Release History

This version
History Node

0.1.5

History Node

0.1.4

History Node

0.1.3

History Node

0.1.2

History Node

0.1.1

History Node

0.1.0

Download Files

Download Files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

File Name & Checksum SHA256 Checksum Help Version File Type Upload Date
histogramy-0.1.5.tar.gz (465.7 kB) Copy SHA256 Checksum SHA256 Source Jan 29, 2013

Supported By

WebFaction WebFaction Technical Writing Elastic Elastic Search Pingdom Pingdom Monitoring Dyn Dyn DNS Sentry Sentry Error Logging CloudAMQP CloudAMQP RabbitMQ Heroku Heroku PaaS Kabu Creative Kabu Creative UX & Design Fastly Fastly CDN DigiCert DigiCert EV Certificate Rackspace Rackspace Cloud Servers DreamHost DreamHost Log Hosting