Skip to main content

HIVAE (Handling incomplete heterogeneous data using VAEs. - by Nazabal, et al., DOI: 10.1016/j.patcog.2020.107501, 2020) - Extenstion of implementations as easy to use Python library

Project description

hivae

This repository contains the Modular reimplemenation of the Heterogeneous Incomplete Variational Autoencoder model (HI-VAE)written by Alfredo Nazabal and co-workers. The package provided here is to a large part baseed on this implementation, but adheres to a more pythonic way, omitting the need for supplying parameters via I/O , as well as aligning the modelling more with sklearn. It was written by A. Karwath (a.karwath@bham.ac.uk) and the CardAIc group @ University of Birmingham.

The details of the background of this model are included in this paper.

Install

The package can be installed using pip:

pip install hivae

Examples

Once checked out, there are a number of example datasets (Wine, Adult and Diabetes), which can be found in ./hivae/examples/data. To evaluate the package, please use ./hivae/examples/hivae_general_example.py. The example should give a general explaination of how to use the package. More details will folow.

Files description

  • hivae.py: The main script of the library, it needs to imported to work with the library and is connected to all the other scripts.
  • loglik_ models_ missing_normalize.py: In this file, the different likelihood models for the different types of variables considered (real, positive, count, categorical and ordinal) are included.
  • model_ HIVAE_inputDropout.py: Contains the HI-VAE with input dropout encoder model.
  • model_ HIVAE_factorized.py: Contains the HI-VAE with factorized encoder model
  • Github page with examples to follow:

Contact

More details regarding the hivae_general_example.py and use of the model (please note that this is under construction)

main_directory: project folder

dataset_name: the name of the database (required)

types_list_d: a dictionary where the key is the dataset name, which contains a list with tuples that indicates the column names, types, the number of dimensions and classes

types:

• count: real values

• cat: categorical 0 or 1

• pos: positive real values

• ordinal: ordinal number

number of dimensions:

• number of possibilities in the categorical variables or 1 in numerical

number of classes:

• number of options (same of number of dimensions for categorical variables)

dataset_path: this is the folder of the csv files

results_path: the output folder for results (currently not used)

network_path: where the models are going to be stored

types_list: the specific type for the dataset you are going to use data_file: the full dataset train_file/ test_file: if the dataset was already splitted

train_data/test_data: pandas dataframes

dim_y: the depth of the network

dim_s/dim_z: dimensions of the embedding

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

hivae-0.19.tar.gz (19.8 kB view details)

Uploaded Source

Built Distribution

hivae-0.19-py3-none-any.whl (23.5 kB view details)

Uploaded Python 3

File details

Details for the file hivae-0.19.tar.gz.

File metadata

  • Download URL: hivae-0.19.tar.gz
  • Upload date:
  • Size: 19.8 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/4.6.0 pkginfo/1.7.0 requests/2.24.0 requests-toolbelt/0.9.1 tqdm/4.61.1 CPython/3.7.2

File hashes

Hashes for hivae-0.19.tar.gz
Algorithm Hash digest
SHA256 e653e79a8d03b827cac7ff2768aab51a0a29ad9fbd1b256dd1b3d6efd4664f54
MD5 0987186677b13682a45d0425547d4034
BLAKE2b-256 842ef92aeddc1990e910df3723b83e65d0cc36d43704c8e26049c166130c0662

See more details on using hashes here.

File details

Details for the file hivae-0.19-py3-none-any.whl.

File metadata

  • Download URL: hivae-0.19-py3-none-any.whl
  • Upload date:
  • Size: 23.5 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/4.6.0 pkginfo/1.7.0 requests/2.24.0 requests-toolbelt/0.9.1 tqdm/4.61.1 CPython/3.7.2

File hashes

Hashes for hivae-0.19-py3-none-any.whl
Algorithm Hash digest
SHA256 543a7c4c428f5ab837cfbda4cf7031cfd2cc93f9653fdeab7ed31ccad46d5527
MD5 98604582c641f529fa457eedeff6800e
BLAKE2b-256 b5abbd18abdfcc9d15287312987b24393f004f37bb8d8e8541bbf2489474603d

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page