Skip to main content

Python code for hidden markov models

Project description

HMM provides python3 code that implements the following algorithms for hidden Markov models:

Forward: Recursive estimation of state probabilities at each time t,
given observation likelihoods for times 1 to t
Backward: Combined with Forward, provides estimates of state
probabilities at each time given _all_ of the observation likelihoods
Train: Implements Baum Welch algorithm which finds a local maximum of
likelihood of model parameters
Decode: Implements Viterbi algorithm for finding the most probable
state sequence

Implementations of the above algrithms are independent of the observation model. HMM enables users to implement any observation model by writing code for a class that provides methods for calculating the likelihood of an observation given a state and for reestimating model parameters given observations and state likelihoods.

HMM includes implementations of the following observation models:

IntegerObservation: Integers in a finite range

Gauss: Floats with state dependent mean and variance

GaussMAP: Like Gauss but uses maximum a posteriori probability estimation

MultivariateGaussian: Like GaussMAP but observations are vectors of floats

AutoRegressive: Like GaussMAP but with linear autoregressive forecast and Gaussian residual

Observation_with_bundles: Observations that can include classification data

I (Andy Fraser) restarted this project on 2021-01-22. I will rewrite the code for my book “Hidden Markov Models and Dynamical Systems”. This project contains general HMM code that is not specific to the book.

You can redistribute and/or modify hmm under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version. See the file “License” in the root directory of the hmm distribution.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

hmm4ds-0.0.6.tar.gz (23.8 kB view hashes)

Uploaded source

Built Distribution

hmm4ds-0.0.6-py3-none-any.whl (26.8 kB view hashes)

Uploaded py3

Supported by

AWS AWS Cloud computing Datadog Datadog Monitoring Facebook / Instagram Facebook / Instagram PSF Sponsor Fastly Fastly CDN Google Google Object Storage and Download Analytics Huawei Huawei PSF Sponsor Microsoft Microsoft PSF Sponsor NVIDIA NVIDIA PSF Sponsor Pingdom Pingdom Monitoring Salesforce Salesforce PSF Sponsor Sentry Sentry Error logging StatusPage StatusPage Status page