Skip to main content

Hyperspace Neighbour Penetration package

Project description

https://img.shields.io/pypi/v/hnp.svg Documentation Status License

Data center temperature control is a critical process for maintaining high quality of service. While maintaining temperatures in appropriate temperature bands is paramount, it is also important to consider that every heating or cooling strategy has associated environmental and economic costs. For example, a cooling strategy that makes excessive or unnecessary use of air conditioning will consume more energy than a strategy that better leverages free cooling. As long as operational constraints are satisfied, opportunities to discover temperature control solutions that minimize energy utilization are highly valuable. Co-developed by the Vector Institute and TELUS, this repository provides a solution for training a reinforcement learning (RL) agent to perform temperature control in a room. Click here for detailed documentation.

Features

  • Innovative discretization method: The provided solution leverages an innovation in state space design proposed by TELUS called Hyperspace Neighbour Penetration (HNP), which allows slowly-changing continuous variables to be approximated as discrete variables.

  • Support for building control environments: The HNP package has built-in support for Sinergym - a building control simulation environment, as well as Beobench - a toolkit providing unified access to building control environments.

  • Ready-to-use RL agents: A HNP-enabled Q-Learning agent and two baseline agents are provided in the package.

HNP

A key assumption in HNP is that continuous state spaces with very incremental, locally linear transitions can be effectively discretized into relatively coarse ranges or bands of values as tiles. When this type of coarse discretization is applied to a slowly-changing variable (e.g. temperature), it can lead to situations where an action (e.g. changing the setpoints) results in such a small change to the subsequent state observation that no discrete state transition has actually occurred. A naïve solution could be to increase the granularity of the state space, i.e. to consider much smaller changes in temperature as distinct elements of the state space, but it is computationally expensive or impossible to establish an extremely granular grid system. Alternatively, HNP computes multiple values from tile boundaries and then aggregates them using a weighted norm. This enables state-action pairs to result in steps towards other states and their corresponding values.

HNP is fully described in its foundational paper.

Supported Environments

Sinergym

Sinergym is a building control environment that follows OpenAI Gym interface and uses EnergyPlus simulator. To use Sinergym, see detailed instruction on how to install here.

Beobench

Beobench is a toolkit providing unified access to building control environments for RL (Sinergym also supported). It uses docker to manage all environment dependencies in the background. See detailed instruction on how to use Beobench here.

Supported Agents

The HNP package provides the following agents:

  • Random Action Agent: An agent that takes a random action

  • Fixed Action Agent: An agent that always take a pre-defined action

  • HNP-enabled Q-Learning Agent: A Q-learning agent with built-in HNP that allows different types of observation variables

Quickstart

Requirements

  • Python ≥ 3.9

  • Sinergym == 2.2.0

Installation

To install hnp from PyPI:

pip install hnp

Example Usage

This is a minimalist example of using the HNP Q-Learning agent in Sinergym

import numpy as np

from hnp.agents import QLearningAgent
from hnp.environment import ObservationWrapper, create_env

config = {
    "agent": {
        "num_episodes": 100,
        "horizon": 24,
        "gamma": 0.99,
        "num_tiles": 20,
        "initial_epsilon": 1,
        "epsilon_annealing": 0.999,
        "learning_rate": 0.1,
        "learning_rate_annealing": 0.999
    },
    "env": {
        "name": "Eplus-5Zone-hot-discrete-v1",
        "normalize": True,
        "obs_to_keep": [0, 1, 8, 10],
        "mask": [0, 0, 0, 0]
    }
}

obs_to_keep = np.array(config["env"]["obs_to_keep"])
mask = np.array(config["env"]["mask"])

env = create_env(config["env"])
env = ObservationWrapper(env, obs_to_keep)

agent = QLearningAgent(
    env,
    config["agent"]["params"],
    mask,
)
agent.train()
agent.save_results()
env.close()

Documentation

Detailed package documentation: HNP Docs

License

The code in this repository is published under 3-Clause BSD license (see LICENSE file).

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

hnp-1.1.2.tar.gz (16.2 kB view details)

Uploaded Source

Built Distribution

hnp-1.1.2-py3-none-any.whl (9.8 kB view details)

Uploaded Python 3

File details

Details for the file hnp-1.1.2.tar.gz.

File metadata

  • Download URL: hnp-1.1.2.tar.gz
  • Upload date:
  • Size: 16.2 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.9.13

File hashes

Hashes for hnp-1.1.2.tar.gz
Algorithm Hash digest
SHA256 426b643a26580bf6acb8a1fd4a9e1e42e5243d0559d38b22e199eb1c185e89d4
MD5 a05a3d886d9515ef7b4ef6a1285a8713
BLAKE2b-256 78f8c6cb724a0fcf54979efc089e8150d0b29c6d9994d96ac871c5554125486f

See more details on using hashes here.

File details

Details for the file hnp-1.1.2-py3-none-any.whl.

File metadata

  • Download URL: hnp-1.1.2-py3-none-any.whl
  • Upload date:
  • Size: 9.8 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.9.13

File hashes

Hashes for hnp-1.1.2-py3-none-any.whl
Algorithm Hash digest
SHA256 5315a460a0b8948ee008c623897e8019d254ea84c9dd24834d1b43f9eb11cdbb
MD5 062d981db61c77bcb45fd3b3ca7d13f2
BLAKE2b-256 a5c2cfe4d30dbbe3ba88c0dd92633093d340421e17d1252193bd7aec299646ab

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page