Skip to main content

A Django App to use a simple load curve store

Project description

HoLcStore

HoLcStore is a Django app for creating a simple TimeSeries store in your database.

Table of Contents

Getting Started

  1. Add "holcstore" to your INSTALLED_APPS setting like this
    INSTALLED_APPS = [
        ...,
        "holcstore",
    ]
  1. Start using the abstract model Store by importing it
    from hostore.models import Store

    class YourStore(Store):
        # add new fields

        class Meta(Store.Meta):
            abstract = False
            # add your meta

Choose the appropriate store

Store class

This class is used to store timeseries, using a key:value pattern. A prm key is used to reference the saved series.

Handle update and replace features.

TimeseriesStore class

This class is used to store timeseries, using a user provided pattern through its model.

TimeseriesChunkStore class

This class is used to store timeseries, using a user provided pattern through its model.

Handle update and replace features.

Store timeseries by chunk for a better performance with large timeseries.

User friendly API to perform a client-server sync.

Basic Usage: Store class

Saving a timeserie to database

    from path.to.YourStore import YourStore
    import pandas as pd

    key = "3000014324556"
    client_id = 0
    idx = pd.date_range('2024-01-01 00:00:00+00:00', '2024-01-02 00:00:00+00:00', freq='30min')
    ds = pd.Series(data=[1]*len(idx), index=idx)
    # Put the load curve to the store without versionning
    YourStore.set_lc(key, ds, client_id)
    # If you want to activate the versionning 
    YourStore.set_lc(key, ds, client_id, versionning=True)
    # Each time you call set_lc with your id, a new version will be saved in the database

Saving multiple timeseries to database

    from path.to.YourStore import YourStore
    import pandas as pd

    key = "3000014324556"
    client_id = 0
    idx = pd.date_range('2024-01-01 00:00:00+00:00', '2024-01-02 00:00:00+00:00', freq='30min')
    df = pd.Series(data={'key1': [1]*len(idx), 'key2': [2]*len(idx), }, index=idx)
    # Put the load curve to the store without versionning
    YourStore.set_many_lc(df, client_id)
    # If you want to activate the versionning 
    YourStore.set_many_lc(df, client_id, versionning=True)

Getting a load curve from the database

    from path.to.YourStore import YourStore

    key = "3000014324556"
    client_id = 0
    # Get the load curve from the database
    # I multiple versions exists, they will be combined beginning with the version 0 and using 
    # https://pandas.pydata.org/docs/reference/api/pandas.DataFrame.combine_first.html
    datas = YourStore.get_lc(key, client_id)
    
    if not datas:
        my_timeserie = datas[0]['data']
        last_updated = datas[0]['last_modified']
    
    # If you want to retreive all versions 
    datas = YourStore.get_lc(key, client_id, combined_versions=False)
    # datas contains all timeseries linked to key
    
    # If you want to retreive a specific version
    datas = YourStore.get_lc(key, client_id, version=1)

Basic Usage: TimeseriesStore class

Define your class in models.py

class MyTimeseriesStore(TimeseriesStore):
    year = models.IntegerField()
    kind = models.CharField(max_length=100)

    class Meta(TimeseriesStore.Meta):
        unique_together = ('year', 'kind')

Usage samples

# specify attributes to set
ts_attrs = dict(year=2020, kind='a')

# build a timeserie 
ds_ts = pd.Series(...)  

# set timeserie to db
MyTimeseriesStore.set_ts(ts_attrs, ds_ts)

# update existing timeserie in db (will combine ds_ts + ds_ts_v2, giving priority to ds_ts_v2 datas)
MyTimeseriesStore.set_ts(ts_attrs, ds_ts_v2, update=True)

# get timeserie from db if unique match
ds_ts = MyTimeseriesStore.get_ts(ts_attrs, flat=True)

# get timeseries from db if multiple match
datas = MyTimeseriesStore.get_ts(ts_attrs)
ds_ts1 = datas[0]['data']

Basic usage: TimeseriesChunkStore class

Compact time-series storage for Django + PostgreSQL

TimeseriesChunkStore is an abstract Django model that lets you persist high-resolution time-series efficiently as compressed LZ4 blobs, while still querying them through the ORM.

Main features

Feature Description
Chunking Split each series by ('year',) or ('year','month') so blobs stay small.
Compression Data saved as LZ4-compressed NumPy buffers; index is rebuilt on the fly.
Dense layout Each chunk is re-indexed on a regular grid (STORE_FREQ, STORE_TZ).
Smart upsert set_ts(..., update=True) merges with existing data via combine_first.
Bulk helpers set_many_ts() / yield_many_ts() for mass insert / streaming read.
Sync ready list_updates, export_chunks, import_chunks enable cheap client ↔ server replication.
REST scaffolding TimeseriesChunkStoreSyncViewSet + TimeseriesChunkStoreSyncClient give you plug-and-play API endpoints and a Python client.

Quick start

1/ Define your store class

# models.py
class MyChunkedStore(TimeseriesChunkStore):
    # Custom fields (can be seen as "axis keys")
    version = models.IntegerField()
    kind    = models.CharField(max_length=20)

    # Store settings
    CHUNK_AXIS = ('year', 'month')   # Chunking axis for timeseries storage. Configs : ('year',) / ('year', 'month')
    STORE_TZ   = 'Europe/Paris' # Chunking timezone (also timeseries output tz)
    STORE_FREQ   = '1h' # Timeseries storage frequency. (the store reindex input series but never resample)

The Custom fields are strictly indexation axis : you must not use them to store metadata or redundant data.

During django's setup, any class that inherits from TimeseriesChunkStore will have its Meta properties unique_together and indexes automatically edited, such as it contains all your keys and the mandatory keys from the abstract store.

Do not :

  • define your own Meta.unique_together or Meta.indexes.
  • define those fields : start_ts, data, dtype, updated_at, chunk_index, is_deleted

When you request a timeserie, all custom fields must be specified.

2/ Use your store class

# my_timeseries_usage.py
# Set one
import pandas as pd

attrs = {"version": 1, "kind": "type1"}
MyChunkedStore.set_ts(attrs, my_series1)  # first write
MyChunkedStore.set_ts(attrs, my_series2, update=True)  # update (combine_first)
MyChunkedStore.set_ts(attrs, my_series3, replace=True)  # replace
MyChunkedStore.set_ts(attrs, my_series4)  # FAIL (attrs exists)

# Get one
full = MyChunkedStore.get_ts(attrs)
window = MyChunkedStore.get_ts(attrs, start=pd.Timestamp("2024-01-01 00:00:00+01:00"), end=pd.Timestamp("2024-06-01 02:00:00+02:00"))
fail = MyChunkedStore.get_ts({"version": 1})  # FAIL : must specify all attrs
none = MyChunkedStore.get_ts({"version": 1, "kind": "nonexisting"})  # returns None : does not exists

# Set many
MyChunkedStore.set_many_ts(
  mapping={
    (5, "type1"): my_series1,
    (5, "type2"): my_series2,
  },
  keys=("version", "kind")
)

# Yield many
series_generator = MyChunkedStore.yield_many_ts({"version": 5})  # contains the 2 (serie, key_dict) from mapping

# CANNOT set many over existing
MyChunkedStore.set_many_ts(mapping, keys=("version", "kind"))  # FAIL : at least one value from mapping already exists

3/ Setup sync tools

Two TimeseriesChunkStore can be easily synchronized between a server and a client. Client and server models must be the same

3.1/ Define the ViewSet (server side : serve data)

You can set throttle, auth etc. through as_factory kwargs.

# views.py
from hostore.utils.ts_sync import TimeseriesChunkStoreSyncViewSet

YearSync = TimeseriesChunkStoreSyncViewSet.as_factory(MyChunkStoreServerSide, throttle_classes=[], **kwargs_views)  # pass ViewSet kwargs
router.register("ts/myendpoint", YearSync, basename="ts-myendpoint")

3.2/ Define the API (client side : pull new data)

# my_client_sync_module.py
from hostore.utils.ts_sync import TimeseriesChunkStoreSyncClient

client = TimeseriesChunkStoreSyncClient(
    endpoint="https://api.example.com/ts/myendpoint",
    store_model=MyChunkStoreClientSide,
)
client.pull(batch=100)      # fetch new / updated chunks limiting one batch request to 100 items

(back to top)

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

holcstore-0.5.2.tar.gz (40.1 kB view details)

Uploaded Source

Built Distribution

holcstore-0.5.2-py3-none-any.whl (53.1 kB view details)

Uploaded Python 3

File details

Details for the file holcstore-0.5.2.tar.gz.

File metadata

  • Download URL: holcstore-0.5.2.tar.gz
  • Upload date:
  • Size: 40.1 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? Yes
  • Uploaded via: twine/6.1.0 CPython/3.12.9

File hashes

Hashes for holcstore-0.5.2.tar.gz
Algorithm Hash digest
SHA256 d750e9b2f0990db84ec95707f5b4e823dd6ccee3ade88c0f1056efcd5e3779ff
MD5 c403a8c83491ed2fd7ec1e708bc12e15
BLAKE2b-256 d697cc54f136e4c123745f544ae3c115abb1ad4938eab33b86ca0843cb413df7

See more details on using hashes here.

Provenance

The following attestation bundles were made for holcstore-0.5.2.tar.gz:

Publisher: publish.yml on jpl-holmium/holcstore

Attestations: Values shown here reflect the state when the release was signed and may no longer be current.

File details

Details for the file holcstore-0.5.2-py3-none-any.whl.

File metadata

  • Download URL: holcstore-0.5.2-py3-none-any.whl
  • Upload date:
  • Size: 53.1 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? Yes
  • Uploaded via: twine/6.1.0 CPython/3.12.9

File hashes

Hashes for holcstore-0.5.2-py3-none-any.whl
Algorithm Hash digest
SHA256 707425ed2b5c934316cd9c5238b719995384c1a0e582e376caad8ea7e4de7d8b
MD5 d240b27a02f5f743ec9b59f1fa462570
BLAKE2b-256 95c418822ca6950c9cae4c4bbe4df763b3347600c88bfcaac1e55ec38c5eab8d

See more details on using hashes here.

Provenance

The following attestation bundles were made for holcstore-0.5.2-py3-none-any.whl:

Publisher: publish.yml on jpl-holmium/holcstore

Attestations: Values shown here reflect the state when the release was signed and may no longer be current.

Supported by

AWS Cloud computing and Security Sponsor Datadog Monitoring Fastly CDN Google Download Analytics Pingdom Monitoring Sentry Error logging StatusPage Status page