Skip to main content

A package for benchmarking the performance of arbitrary functions

Project description

Bencher

Continuous Integration Status

Ci Read the Docs Codecov GitHub issues GitHub pull-requests merged PyPI PyPI - Downloads License Python Pixi Badge

Install

pip install holobench

Intro

Bencher is a tool to make it easy to benchmark the interactions between the input parameters to your algorithm and its resulting performance on a set of metrics. It calculates the cartesian product of a set of variables

Parameters for bencher are defined using the param library as a config class with extra metadata that describes the bounds of the search space you want to measure. You must define a benchmarking function that accepts an instance of the config class and return a dictionary with string metric names and float values.

Parameters are benchmarked by passing in a list N parameters, and an N-Dimensional tensor is returned. You can optionally sample each point multiple times to get back a distribution and also track its value over time. By default the data will be plotted automatically based on the types of parameters you are sampling (e.g, continuous, discrete), but you can also pass in a callback to customize plotting.

The data is stored in a persistent database so that past performance is tracked.

Assumptions

The input types should also be of one of the basic datatypes (bool, int, float, str, enum, datetime) so that the data can be easily hashed, cached and stored in the database and processed with seaborn and xarray plotting functions. You can use class inheritance to define hierarchical parameter configuration class types that can be reused in a bigger configuration classes.

Bencher is designed to work with stochastic pure functions with no side effects. It assumes that when the objective function is given the same inputs, it will return the same output +- random noise. This is because the function must be called multiple times to get a good statistical distribution of it and so each call must not be influenced by anything or the results will be corrupted.

Pseudocode of bencher

Enumerate a list of all input parameter combinations
for each set of input parameters:
    pass the inputs to the objective function and store results in the N-D array

    get unique hash for the set of inputs parameters
    look up previous results for that hash
    if it exists:
        load historical data
        combine latest data with historical data
    
    store the results using the input hash as a key
deduce the type of plot based on the input and output types
return data and plot

Demo

if you have pixi installed you can run a demo example with:

pixi run demo

An example of the type of output bencher produces can be seen here:

https://dyson-ai.github.io/bencher/

Examples

Most of the features that are supported are demonstrated in the examples folder.

Start with example_simple_float.py and explore other examples based on your data types:

  • example_float.py: More complex float operations
  • example_float2D.py: 2D float sweeps
  • example_float3D.py: 3D float sweeps
  • example_categorical.py: Sweeping categorical values (enums)
  • example_strings.py: Sweeping categorical string values
  • example_float_cat.py: Mixing float and categorical values
  • example_image.py: Output images as part of the sweep
  • example_video.py: Output videos as part of the sweep
  • example_filepath.py: Output arbitrary files as part of the sweep
  • and many others

Documentation

API documentation can be found at https://bencher.readthedocs.io/en/latest/

More documentation is needed for the examples and general workflow.

Project details


Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

holobench-1.30.2.tar.gz (92.8 kB view details)

Uploaded Source

Built Distribution

holobench-1.30.2-py3-none-any.whl (136.2 kB view details)

Uploaded Python 3

File details

Details for the file holobench-1.30.2.tar.gz.

File metadata

  • Download URL: holobench-1.30.2.tar.gz
  • Upload date:
  • Size: 92.8 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.1.1 CPython/3.11.10

File hashes

Hashes for holobench-1.30.2.tar.gz
Algorithm Hash digest
SHA256 f417853c27fc7ef56b7491703c51336e73e55f6cb7058c9f68b95f1ebd4782b1
MD5 cc9f46fbbf24df216c6b0f2da7a4673a
BLAKE2b-256 e0182bb174f3e1f5b70d89ab7366db2a0335e113f60f7fc8aa66f9f692de8128

See more details on using hashes here.

File details

Details for the file holobench-1.30.2-py3-none-any.whl.

File metadata

  • Download URL: holobench-1.30.2-py3-none-any.whl
  • Upload date:
  • Size: 136.2 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.1.1 CPython/3.11.10

File hashes

Hashes for holobench-1.30.2-py3-none-any.whl
Algorithm Hash digest
SHA256 7f530449dd699f30ee930b20c37f35791b753fb1c8c81094b196279a99dae9da
MD5 84e7200891409e9611535cf0a4010672
BLAKE2b-256 841a265ce882ba0ff3181ec309b4b482a281a1a784a5ea76ca21f0359fcecd80

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page