Petastorm is a library enabling the use of Parquet storage from Tensorflow, Pytorch, and other Python-based ML training frameworks. This is a fork of Petastorm that is compatible with Hops installations
Project description
Petastorm
Petastorm is an open source data access library developed at Uber ATG. This library enables single machine or distributed training and evaluation of deep learning models directly from datasets in Apache Parquet format. Petastorm supports popular Python-based machine learning (ML) frameworks such as Tensorflow, PyTorch, and PySpark. It can also be used from pure Python code.
Documentation web site: https://petastorm.readthedocs.io
Installation
pip install petastorm
There are several extra dependencies that are defined by the petastorm package that are not installed automatically. The extras are: tf, tf_gpu, torch, opencv, docs, test.
For example to trigger installation of GPU version of tensorflow and opencv, use the following pip command:
pip install petastorm[opencv,tf_gpu]
Generating a dataset
A dataset created using Petastorm is stored in Apache Parquet format. On top of a Parquet schema, petastorm also stores higher-level schema information that makes multidimensional arrays into a native part of a petastorm dataset.
Petastorm supports extensible data codecs. These enable a user to use one of the standard data compressions (jpeg, png) or implement her own.
Generating a dataset is done using PySpark. PySpark natively supports Parquet format, making it easy to run on a single machine or on a Spark compute cluster. Here is a minimalistic example writing out a table with some random data.
HelloWorldSchema = Unischema('HelloWorldSchema', [
UnischemaField('id', np.int32, (), ScalarCodec(IntegerType()), False),
UnischemaField('image1', np.uint8, (128, 256, 3), CompressedImageCodec('png'), False),
UnischemaField('other_data', np.uint8, (None, 128, 30, None), NdarrayCodec(), False),
])
def row_generator(x):
"""Returns a single entry in the generated dataset. Return a bunch of random values as an example."""
return {'id': x,
'image1': np.random.randint(0, 255, dtype=np.uint8, size=(128, 256, 3)),
'other_data': np.random.randint(0, 255, dtype=np.uint8, size=(4, 128, 30, 3))}
def generate_hello_world_dataset(output_url='file:///tmp/hello_world_dataset'):
rows_count = 10
rowgroup_size_mb = 256
spark = SparkSession.builder.config('spark.driver.memory', '2g').master('local[2]').getOrCreate()
sc = spark.sparkContext
# Wrap dataset materialization portion. Will take care of setting up spark environment variables as
# well as save petastorm specific metadata
with materialize_dataset(spark, output_url, HelloWorldSchema, rowgroup_size_mb):
rows_rdd = sc.parallelize(range(rows_count))\
.map(row_generator)\
.map(lambda x: dict_to_spark_row(HelloWorldSchema, x))
spark.createDataFrame(rows_rdd, HelloWorldSchema.as_spark_schema()) \
.coalesce(10) \
.write \
.mode('overwrite') \
.parquet(output_url)
HelloWorldSchema is an instance of a Unischema object. Unischema is capable of rendering types of its fields into different framework specific formats, such as: Spark StructType, Tensorflow tf.DType and numpy numpy.dtype.
To define a dataset field, you need to specify a type, shape, a codec instance and whether the field is nullable for each field of the Unischema.
We use PySpark for writing output Parquet files. In this example, we launch PySpark on a local box (.master('local[2]')). Of course for a larger scale dataset generation we would need a real compute cluster.
We wrap spark dataset generation code with the materialize_dataset context manager. The context manager is responsible for configuring row group size at the beginning and write out petastorm specific metadata at the end.
The row generating code is expected to return a Python dictionary indexed by a field name. We use row_generator function for that.
dict_to_spark_row converts the dictionary into a pyspark.Row object while ensuring schema HelloWorldSchema compliance (shape, type and is-nullable condition are tested).
Once we have a pyspark.DataFrame we write it out to a parquet storage. The parquet schema is automatically derived from HelloWorldSchema.
Plain Python API
The petastorm.reader.Reader class is the main entry point for user code that accesses the data from an ML framework such as Tensorflow or Pytorch. The reader has multiple features such as:
Selective column readout
Multiple parallelism strategies: thread, process, single-threaded (for debug)
N-grams readout support
Row filtering (row predicates)
Shuffling
Partitioning for multi-GPU training
Local caching
Reading a dataset is simple using the petastorm.reader.Reader class which can be created using the petastorm.make_reader factory method:
from petastorm import make_reader
with make_reader('hdfs://myhadoop/some_dataset') as reader:
for row in reader:
print(row)
hdfs://... and file://... are supported URL protocols.
Once a Reader is instantiated, you can use it as an iterator.
Tensorflow API
To hookup the reader into a tensorflow graph, you can use the tf_tensors function:
with make_reader('file:///some/localpath/a_dataset') as reader:
row_tensors = tf_tensors(reader)
with tf.Session() as session:
for _ in range(3):
print(session.run(row_tensors))
Alternatively, you can use new tf.data.Dataset API;
with make_reader('file:///some/localpath/a_dataset') as reader:
dataset = make_petastorm_dataset(reader)
iterator = dataset.make_one_shot_iterator()
tensor = iterator.get_next()
with tf.Session() as sess:
sample = sess.run(tensor)
print(sample.id)
Pytorch API
As illustrated in pytorch_example.py, reading a petastorm dataset from pytorch can be done via the adapter class petastorm.pytorch.DataLoader, which allows custom pytorch collating function and transforms to be supplied.
Be sure you have torch and torchvision installed:
pip install torchvision
The minimalist example below assumes the definition of a Net class and train and test functions, included in pytorch_example:
import torch
from petastorm.pytorch import DataLoader
torch.manual_seed(1)
device = torch.device('cpu')
model = Net().to(device)
optimizer = torch.optim.SGD(model.parameters(), lr=0.01, momentum=0.5)
def _transform_row(mnist_row):
transform = transforms.Compose([
transforms.ToTensor(),
transforms.Normalize((0.1307,), (0.3081,))
])
return (transform(mnist_row['image']), mnist_row['digit'])
transform = TransformSpec(_transform_row, removed_fields=['idx'])
with DataLoader(make_reader('file:///localpath/mnist/train', num_epochs=10,
transform_spec=transform), batch_size=64) as train_loader:
train(model, device, train_loader, 10, optimizer, 1)
with DataLoader(make_reader('file:///localpath/mnist/test', num_epochs=10,
transform_spec=transform), batch_size=1000) as test_loader:
test(model, device, test_loader)
PySpark and SQL
Using the Parquet data format, which is natively supported by Spark, makes it possible to use a wide range of Spark tools to analyze and manipulate the dataset. The example below shows how to read a Petastorm dataset as a Spark RDD object:
# Create a dataframe object from a parquet file
dataframe = spark.read.parquet(dataset_url)
# Show a schema
dataframe.printSchema()
# Count all
dataframe.count()
# Show a single column
dataframe.select('id').show()
SQL can be used to query a Petastorm dataset:
spark.sql(
'SELECT count(id) '
'from parquet.`file:///tmp/hello_world_dataset`').collect()
You can find a full code sample here: pyspark_hello_world.py,
Non Petastorm Parquet Stores
Petastorm can also be used to read data directly from Apache Parquet stores. To achieve that, use make_batch_reader (and not make_reader). The following table summarizes the differences make_batch_reader and make_reader functions.
make_reader |
make_batch_reader |
---|---|
Only Petastorm datasets (created using materializes_dataset) |
Any Parquet store (some native Parquet column types are not supported yet. |
The reader returns one record at a time. |
The reader returns batches of records. The size of the batch is not fixed and defined by Parquet row-group size. |
Predicates passed to make_reader are evaluated per single row. |
Predicates passed to make_batch_reader are evaluated per batch. |
Troubleshooting
See the Troubleshooting page and please submit a ticket if you can’t find an answer.
Publications
Gruener, R., Cheng, O., and Litvin, Y. (2018) Introducing Petastorm: Uber ATG’s Data Access Library for Deep Learning. URL: https://eng.uber.com/petastorm/
How to Contribute
We prefer to receive contributions in the form of GitHub pull requests. Please send pull requests against the github.com/uber/petastorm repository.
If you are looking for some ideas on what to contribute, check out github issues and comment on the issue.
If you have an idea for an improvement, or you’d like to report a bug but don’t have time to fix it please a create a github issue.
To contribute a patch:
Break your work into small, single-purpose patches if possible. It’s much harder to merge in a large change with a lot of disjoint features.
Submit the patch as a GitHub pull request against the master branch. For a tutorial, see the GitHub guides on forking a repo and sending a pull request.
Include a detailed describtion of the proposed change in the pull request.
Make sure that your code passes the unit tests. You can find instructions how to run the unit tests here.
Add new unit tests for your code.
Thank you in advance for your contributions!
See the Development for development related information.
Project details
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
File details
Details for the file hops-petastorm-0.7.6.tar.gz
.
File metadata
- Download URL: hops-petastorm-0.7.6.tar.gz
- Upload date:
- Size: 153.5 kB
- Tags: Source
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/1.13.0 pkginfo/1.5.0.1 requests/2.18.4 setuptools/40.8.0 requests-toolbelt/0.9.1 tqdm/4.31.1 CPython/3.6.2
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | a670dba461201048041276daad514e6d6ed1ca836c8506fcd20ba02b29c8a952 |
|
MD5 | 898c8aafdb6c493dd60dd014a4fbb794 |
|
BLAKE2b-256 | f1a56cd312f4745a86f30ea75db75866c6e3fc73b0a729dd6a81b0043e2f6220 |