Skip to main content

Photometry (local and global) for host galaxy of supernovae

Project description

HostPhot

Conda environment

It is recommended to create an environment for every new project:

conda create -n hostphot pip
conda activate hostphot
pip install hostphot

Modules

Cutouts

This module allows you to download image cutouts from PS1, DES and SDSS. For this, you can use get_PS1_images(), get_DES_images() and get_SDSS_images(), respectively. For example:

from hostphot.cutouts import get_PS1_images

ra, dec = 30, 100
size = 400  # in pixels
filters = 'grizy'

fits_images = get_PS1_images(ra, dec, size, filters)

where fits_images is a list with the fits images in the given filters.

You can also use download_multiband_images() for multiple images:

from hostphot.cutouts import download_multiband_images

download_multiband_images(sn_name, ra, dec, size,
                                work_dir, filters,
                                  overwrite, survey)

where work_dir is where all the images will be downloaded. A Subdirectory inside work_dir will be created with the SN name as the directory name.

Local Photometry

Local photometry can be obtained for the downloaded images. For this, use extract_local_photometry() for a single image:

from hostphot.local_photometry import extract_local_photometry

fits_file = 'path/to/local/fits_file'
ra, dec = 30, 100
z = 0.01  # redshift
ap_radius = 4  # aperture for the photometry in kpc
survey = 'PS1'

extract_local_photometry(fits_file, ra, dec, z, ap_radius, survey)

which returns mag and mag_err. You can also use multi_local_photometry() for multiple images:

from hostphot.local_photometry import multi_local_photometry

multi_local_photometry(name_list, ra_list, dec_list, z_list,
                             ap_radius, work_dir, filters,
                               survey, correct_extinction)

where work_dir should be the same as used in download_multiband_images() and name_list should contain the names of the SNe used in download_multiband_images() as well. This produces a pandas DataFrame as an output where, e.g., column g is the g-band magnitude and g_err its uncertainty.

Global Photometry

Global photometry can be obtained in a similar way to local photometry. Use extract_global_photometry() for a single image:

from hostphot.global_photometry import extract_global_photometry

survey = 'PS1'

extract_global_photometry(fits_file, host_ra, host_ra, survey=survey)

which returns mag and mag_err. You can also use multi_global_photometry() for multiple images:

from hostphot.global_photometry import multi_global_photometry

survey = 'PS1'
correct_extinction = True

multi_global_photometry(name_list, host_ra_list, host_dec_list, work_dir, filters,
                               survey=survey, correct_extinction=correct_extinction)

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

hostphot-0.2.0.tar.gz (13.5 kB view details)

Uploaded Source

Built Distribution

hostphot-0.2.0-py3-none-any.whl (16.1 kB view details)

Uploaded Python 3

File details

Details for the file hostphot-0.2.0.tar.gz.

File metadata

  • Download URL: hostphot-0.2.0.tar.gz
  • Upload date:
  • Size: 13.5 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.8.0 pkginfo/1.8.2 readme-renderer/34.0 requests/2.27.1 requests-toolbelt/0.9.1 urllib3/1.26.9 tqdm/4.63.0 importlib-metadata/4.11.3 keyring/23.5.0 rfc3986/2.0.0 colorama/0.4.4 CPython/3.10.2

File hashes

Hashes for hostphot-0.2.0.tar.gz
Algorithm Hash digest
SHA256 4f5c9ea1e096cf0ac15cf5b5bb648bf641eaf07c4b722f5e543a01e4463837e6
MD5 9614095fa99548af6c440b5fa00ea3fd
BLAKE2b-256 027e5f8116069dc7f62fd8602de2b96c450637ef084f11e0150a199a32927835

See more details on using hashes here.

File details

Details for the file hostphot-0.2.0-py3-none-any.whl.

File metadata

  • Download URL: hostphot-0.2.0-py3-none-any.whl
  • Upload date:
  • Size: 16.1 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.8.0 pkginfo/1.8.2 readme-renderer/34.0 requests/2.27.1 requests-toolbelt/0.9.1 urllib3/1.26.9 tqdm/4.63.0 importlib-metadata/4.11.3 keyring/23.5.0 rfc3986/2.0.0 colorama/0.4.4 CPython/3.10.2

File hashes

Hashes for hostphot-0.2.0-py3-none-any.whl
Algorithm Hash digest
SHA256 e7e1dd2fc2da9bc6a2d49941c05fa2add4b5867ede3565b51c7772106bcc3211
MD5 eaf1e381cf9bfb5139209e9e31f29f79
BLAKE2b-256 f84eb95dfcf14a59f19cdd8843921c661c3e01b8ecc71d411e4647caaca26767

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page