Skip to main content

Evaluate generative event sequence models on the long horizon prediction task.

Project description

HoTPP: A Long-Horizon Event Sequence Prediction Benchmark

Installation | Usage | Results | Extension | Paper HoTPP | Paper DeTPP | Citing

The HoTPP benchmark focuses on the long-horizon prediction of event sequences. Each event is characterized by its timestamp, label, and possible additional structured data. Sequences of this type are also known as Marked Temporal Point Processes (MTPPs).

Installation

Sometimes the following parameters are necessary for successful dependency installation:

CXX=<c++-compiler> CC=<gcc-compiler> pip install .

Training and evaluation

The code is divided into the core library and dataset-specific scripts and configuration files.

The dataset-specific part is located in the experiments folder. Each subfolder includes data preparation scripts, model configuration files, and a README file. Data files and logs are usually stored in the same directory. All scripts must be executed from the directory of the specific dataset. Refer to the individual README files for more details.

To train the model, use the following command:

python3 -m hotpp.train --config-dir configs --config-name <model>

To evaluate a specific checkpoint, use the following command:

python3 -m hotpp.evaluate --config-dir configs --config-name <model>

To run multiseed training and evaluation:

python3 -m hotpp.train_multiseed --config-dir configs --config-name <model>

Evaluation results

Transactions

Method Acc. mAP MAE OTD Val / Test T-mAP Val / Test
MostPopular 32.78 0.86 0.752 7.37 / 7.38 1.06 / 0.99
RecentHistory 19.60 0.87 0.924 7.40 / 7.44 2.46 / 2.49
MAE-CE 34.08 3.47 0.693 6.88 / 6.90 5.82 / 5.88
MAE-CE-K 33.69 3.25 0.698 7.18 / 7.19 4.42 / 4.43
RMTPP 34.15 3.47 0.749 6.86 / 6.88 7.08 / 6.69
RMTPP-K 33.63 3.24 0.749 7.10 / 7.11 5.82 / 5.52
NHP 35.43 3.41 0.696 6.97 / 6.98 5.59 / 5.61
AttNHP 31.12 1.21 0.717 7.52 / 7.50 1.71 / 1.48
ODE 35.60 3.34 0.695 6.96 / 6.97 5.53 / 5.52
HYPRO 34.26 3.46 0.758 7.04 / 7.05 7.79 / 7.05
DeTPP 35.04 3.85 0.688 6.65 / 6.66 9.18 / 9.17
DeTPP+ 38.29 4.67 0.638 6.68 / 6.70 9.59 / 9.26

MIMIC-IV

Method Acc. mAP MAE OTD Val / Test T-mAP Val / Test
MostPopular 4.77 2.75 14.52 19.82 / 19.82 0.55 / 0.54
RecentHistory 1.02 2.63 5.34 19.75 / 19.73 2.41 / 2.49
MAE-CE 58.59 47.32 3.00 11.51 / 11.53 21.93 / 21.67
MAE-CE-K 57.91 44.60 3.07 13.17 / 13.18 22.46 / 22.30
RMTPP 58.33 46.24 3.89 13.64 / 13.71 21.49 / 21.08
RMTPP-K 57.48 43.47 3.62 14.68 / 14.72 20.70 / 20.39
NHP 24.97 11.12 6.53 18.59 / 18.60 7.26 / 7.32
AttNHP 42.75 28.55 3.08 14.66 / 14.68 22.64 / 22.46
ODE 43.21 25.34 2.93 14.71 / 14.74 15.41 / 15.18
HYPRO 58.35 45.45 3.95 14.82 / 14.87 16.94 / 16.77
DeTPP 28.62 25.44 2.74 12.86 / 12.85 30.92 / 30.63
DeTPP+ 58.66 46.56 3.01 12.94 / 12.95 30.73 / 30.35

Retweet

Method Acc. mAP MAE OTD Val / Test T-mAP Val / Test
MostPopular 58.50 39.85 18.82 174.9 / 173.5 25.15 / 23.91
RecentHistory 50.29 35.73 21.87 152.3 / 150.3 29.12 / 29.24
MAE-CE 59.95 46.53 18.27 173.3 / 172.7 34.90 / 31.75
MAE-CE-K 59.55 45.09 18.21 168.6 / 167.9 37.11 / 34.73
RMTPP 60.07 46.81 18.45 167.6 / 166.7 47.86 / 44.74
RMTPP-K 59.99 46.34 18.33 164.7 / 163.9 49.07 / 46.16
NHP 60.08 46.83 18.42 167.0 / 165.8 48.31 / 45.07
AttNHP 60.03 46.74 18.39 173.3 / 171.6 28.32 / 25.85
ODE 59.95 46.65 18.38 166.5 / 165.3 48.70 / 44.81
HYPRO 59.87 46.69 18.75 171.4 / 170.7 49.90 / 46.99
DeTPP 59.46 45.82 18.34 137.9 / 134.4 60.96 / 57.37
DeTPP+ 60.04 46.76 18.35 136.4 / 132.9 61.47 / 57.93

Amazon

Method Acc. mAP MAE OTD Val / Test T-mAP Val / Test
MostPopular 33.46 9.58 0.304 7.20 / 7.18 8.59 / 8.31
RecentHistory 24.23 8.15 0.321 6.43 / 6.41 9.73 / 9.21
MAE-CE 35.73 17.14 0.242 6.58 / 6.52 21.94 / 22.56
MAE-CE-K 35.11 16.48 0.246 6.72 / 6.68 22.06 / 22.57
RMTPP 35.76 17.21 0.294 6.62 / 6.57 19.70 / 20.06
RMTPP-K 35.06 16.37 0.300 6.92 / 6.87 17.85 / 18.12
NHP 11.06 11.22 0.449 9.04 / 9.02 26.24 / 26.29
AttNHP 31.83 9.70 0.461 7.32 / 7.30 14.50 / 14.62
ODE 7.54 10.14 0.492 9.48 / 9.46 23.54 / 22.96
HYPRO 35.69 17.21 0.295 6.63 / 6.61 20.58 / 20.53
DeTPP 34.32 15.84 0.260 6.03 / 5.98 36.88 / 37.18
DeTPP+ 35.77 17.27 0.237 6.03 / 5.98 37.08 / 37.20

StackOverflow

Method Acc. mAP MAE OTD Val / Test T-mAP Val / Test
MostPopular 42.90 5.45 0.744 13.56 / 13.77 6.10 / 5.56
RecentHistory 26.42 5.20 0.934 14.52 / 14.55 8.67 / 6.72
MAE-CE 45.41 13.00 0.641 13.57 / 13.64 8.78 / 8.31
MAE-CE-K 44.85 11.16 0.644 13.41 / 13.51 12.42 / 11.42
RMTPP 45.43 13.33 0.701 12.95 / 13.17 13.26 / 12.72
RMTPP-K 44.89 11.72 0.689 12.92 / 13.13 14.91 / 14.30
NHP 44.53 10.86 0.715 13.02 / 13.24 12.67 / 11.96
AttNHP 45.17 12.67 0.705 13.08 / 13.30 11.95 / 11.13
ODE 44.38 10.12 0.711 13.04 / 13.27 11.37 / 10.52
HYPRO 45.18 12.88 0.715 13.04 / 13.26 15.57 / 14.69
DeTPP 44.81 12.33 0.660 11.95 / 12.06 24.44 / 23.11
DeTPP+ 45.53 14.00 0.639 12.04 / 12.14 23.80 / 22.72

Library architecture

Accuracy

HoTPP leverages high-level decomposition from PyTorch Lightning.

DataModule. All datasets are converted to a set of Parquet files. Each record in a Parquet file contains three main fields: id, timestamps, and labels. The id field represents the identity associated with a sequence (user, client, etc.). Timestamps are stored as an array of floating point numbers with a dataset-specific unit of measure. Labels is an array of integers representing a sequence of event types. The dataloader generates a PaddedBatch object containing a dictionary of padded sequences.

Module. The Module implements high-level logic specific to each group of methods. For example, there is a module for autoregressive models and another for next-k approaches. The Module incorporates a loss function, metric evaluator, and sequence encoder. The sequence encoder can produce discrete outputs, as in traditional RNNs, or continuous-time outputs, as in the NHP method.

Trainer: The Trainer object should typically not be modified, except through a configuration file. The Trainer uses the Module and DataModule to train the model and evaluate metrics.

Configuration files

HoTPP uses Hydra for configuration. The easiest way to create a new configuration file is to start from one in the experiments folder. The configuration file includes sections for the logger, data module, module, and trainer. There are also some required top-level fields like model_path and report. It is highly recommended to specify a random seed by setting seed_everything.

Hyperparameter tuning

Hyperparameters can be tuned by WandB Sweeps. Example configuration files for sweeps, such as experiments/amazon/configs/sweep_next_item.yaml, can be used as follows:

wandb sweep ./configs/<sweep-configuration-file>

The above command will generate a command for running the agent, e.g.:

wandb agent <sweep-id>

There is a special script in the library to analyze tuning results:

python3 -m hotpp.parse_wandb_hopt ./configs/<sweep-configuration-file> <sweep-id>

Reproducibility

To achieve reproducible results, it is highly recommended to use the provided Dockerfile. However, there may be minor differences depending on the specific GPU model.

The reference evaluation results are stored in the results subfolder within each dataset directory in the experiments folder.

Tests

To run tests, use the following command:

pytest tests

Citation

If you use HoTPP in your project, please cite the following paper:

@article{karpukhin2024hotppbenchmark,
  title={HoTPP Benchmark: Are We Good at the Long Horizon Events Forecasting?},
  author={Karpukhin, Ivan and Shipilov, Foma and Savchenko, Andrey},
  journal={arXiv preprint arXiv:2406.14341},
  year={2024},
  url ={https://arxiv.org/abs/2406.14341}
}

If you incorporate ideas from DeTPP, use it for comparison, or reference it in a review, please cite the following paper:

@article{karpukhin2024detpp,
  title={DeTPP: Leveraging Object Detection for Robust Long-Horizon Event Prediction},
  author={Karpukhin, Ivan and Savchenko, Andrey},
  journal={arXiv preprint arXiv:2408.13131},
  year={2024},
  url ={https://arxiv.org/abs/2408.13131}
}

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distributions

No source distribution files available for this release.See tutorial on generating distribution archives.

Built Distribution

hotpp_benchmark-0.0.1-py3-none-any.whl (90.7 kB view details)

Uploaded Python 3

File details

Details for the file hotpp_benchmark-0.0.1-py3-none-any.whl.

File metadata

File hashes

Hashes for hotpp_benchmark-0.0.1-py3-none-any.whl
Algorithm Hash digest
SHA256 5e5b4ec947acda048379f63bcb159a05eb71536c950ffd3130059b779b730961
MD5 ab7f13af8c9de1a38a42ab893c944686
BLAKE2b-256 182bb745db9daa80a26f29d757fe046b3d46e7fb7b5cea7131f2181aba6c8b30

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page