Skip to main content

A drop-in replacement for PyHPO using a Rust backend for faster performance

Project description

HPO3

HPO3 is a Rust based drop-in replacement of PyHPO. It is based on the hpo Rust library which is a performance optimzied implementation of PyHPO.

Using the Rust-based hpo library increases performance easily 100 fold for many operations. It enables developers to utilize multithreading, further improving performance greatly.

HPO3 aims to use the exact same API and methods as PyHPO to allow a very simple replacement for all analysis and statistics methods. However, it does not allow customization and modification of the ontology or individual terms, genes etc.

Current status

Most functionality of PyHPO is present and working, though not extensively tested. If you require correct data and stability, keep using PyHPO. If you need performance and speed for rapid experiments, give HPO3 a try.

Similarity calculations are implemented and working both for single terms and for HPOSets. Hyergeometric enrichment is implemted, but with some small differences compared to PyHPO.

There are some helper functions for parallel batchwise processing, which are amazing if you plan on analyzing large datasets.

Installation

HPO3 is provided as binary wheels for most platforms on PyPI, so in most cases you can just run

pip install hpo3

(For macOS, only Python 3.10 and 3.11 are supported, for both x64 and arm at the moment.)

hpo3 ships with a prebuilt HPO Ontology by default, so you can start right away.

Examples

There are also more examples in the PyHPO documentation:

from pyhpo import Ontology, HPOSet

# initilize the Ontology
Ontology()

for term in Ontology:
    print(f"{term.id} | {term.name}")

# Declare the clinical information of the patients
patient_1 = HPOSet.from_queries([
    'HP:0002943',
    'HP:0008458',
    'HP:0100884',
    'HP:0002944',
    'HP:0002751'
])

patient_2 = HPOSet.from_queries([
    'HP:0002650',
    'HP:0010674',
    'HP:0000925',
    'HP:0009121'
])

# and compare their similarity
patient_1.similarity(patient_2)
#> 0.7594183905785477

# Retrieve a term e.g. via its HPO-ID
term = Ontology.get_hpo_object('Scoliosis')

print(term)
#> HP:0002650 | Scoliosis

# Get information content from Term <--> Omim associations
term.information_content['omim']
#> 2.29

# Show how many genes are associated to the term
# (Note that this includes indirect associations, associations
# from children terms to genes.)
len(term.genes)
#> 1094

# Show how many Omim Diseases are associated to the term
# (Note that this includes indirect associations, associations
# from children terms to diseases.)
len(term.omim_diseases)
#> 844

# Get a list of all direct parent terms
for p in term.parents:
    print(p)
#> HP:0010674 | Abnormality of the curvature of the vertebral column

# Get a list of all ancestor (direct + indirect parent) terms
for p in term.all_parents:
    print(p)
#> HP:0000001 | All
#> HP:0011842 | Abnormal skeletal morphology
#> HP:0009121 | Abnormal axial skeleton morphology
#> HP:0033127 | Abnormality of the musculoskeletal system
#> HP:0010674 | Abnormality of the curvature of the vertebral column
#> HP:0000118 | Phenotypic abnormality
#> HP:0000924 | Abnormality of the skeletal system
#> HP:0000925 | Abnormality of the vertebral column

# Get a list of all children terms
for p in term.children:
    print(p)
"""
HP:0002944 | Thoracolumbar scoliosis
HP:0008458 | Progressive congenital scoliosis
HP:0100884 | Compensatory scoliosis
HP:0002944 | Thoracolumbar scoliosis
HP:0002751 | Kyphoscoliosis
"""

# Show the categories a term belongs to
for term in Ontology[10049].categories:
    print(term)
"""
HP:0033127 | Abnormality of the musculoskeletal system
HP:0040064 | Abnormality of limbs
"""

Documentation

I'm in the process adding proper documentation, but the process is not yet that far. You can check in python by using help(Ontology) or help(methodname) to get some documentation. Otherwise, use the PyHPO documentation for now.

Parallel processing

hpo3 is using Rust as backend, so it's able to fully utilize parallel processing. To benefit from this even greater, hpo3 provides some special helper functions for parallel batch processing in the helper submodule

Similarity scores of HPOSets

Pairwise similarity comparison of HPOSets. Specify a list of comparisons to run and hpo3 calculates the result using all available CPUs.

Assume you want to compare the clinical information of a patient to the clinical information of 1000s of other patients:

from pyhpo.helper import set_batch_similarity
from pyhpo import Ontology, HPOSet

Ontology()

main_patient = HPOSet.from_queries([
    'HP:0002943',
    'HP:0008458',
    'HP:0100884',
    'HP:0002944',
    'HP:0002751'
])

# 2 column table with
# - Patient Identifier
# - Comma separated HPO-terms
patient_source = """\
Patient_000001\tHP:0007587,HP:4000044,HP:0001845,HP:0041249,HP:0032648
Patient_000002\tHP:0034338,HP:0031955,HP:0003311,HP:0032564,HP:0100238
Patient_000003\tHP:0031096,HP:0410280,HP:0009899,HP:0002088,HP:0100204
Patient_000004\tHP:0030782,HP:0011439,HP:0009751,HP:0001433,HP:0030336
Patient_000005\tHP:0025029,HP:0033643,HP:0000957,HP:0005593,HP:0012486
Patient_000006\tHP:0009344,HP:0430016,HP:0005621,HP:0010043,HP:0030974
Patient_000007\tHP:0010760,HP:0009331,HP:0100119,HP:0012871,HP:0003653
Patient_000008\tHP:0001636,HP:0000561,HP:0009990,HP:3000075,HP:0007333
Patient_000009\tHP:0011675,HP:0011730,HP:0032729,HP:0032169,HP:0002888
Patient_000010\tHP:0004900,HP:0010761,HP:0020212,HP:0001806,HP:0033372
Patient_000011\tHP:0033336,HP:0025134,HP:0033815,HP:0032290,HP:0032472
Patient_000012\tHP:0004286,HP:0010543,HP:0007258,HP:0009582,HP:0005871
Patient_000013\tHP:0000273,HP:0031967,HP:0033305,HP:0010862,HP:0031750
Patient_000014\tHP:0031403,HP:0020134,HP:0011260,HP:0000826,HP:0030739
Patient_000015\tHP:0009966,HP:0034101,HP:0100736,HP:0032385,HP:0030152
Patient_000016\tHP:0011398,HP:0002165,HP:0000512,HP:0032028,HP:0007807
Patient_000017\tHP:0007465,HP:0031214,HP:0002575,HP:0007765,HP:0100404
Patient_000018\tHP:0033278,HP:0006937,HP:0008726,HP:0012142,HP:0100185
Patient_000019\tHP:0008365,HP:0033377,HP:0032463,HP:0033014,HP:0009338
Patient_000020\tHP:0012431,HP:0004415,HP:0001285,HP:0010747,HP:0008344
Patient_000021\tHP:0008722,HP:0003436,HP:0007313,HP:0031362,HP:0007236
Patient_000022\tHP:0000883,HP:0007542,HP:0012653,HP:0009411,HP:0031773
Patient_000023\tHP:0001083,HP:0030031,HP:0100349,HP:0001120,HP:0010835
Patient_000024\tHP:0410210,HP:0009341,HP:0100811,HP:0032710,HP:0410064
Patient_000025\tHP:0001056,HP:0005561,HP:0003690,HP:0040157,HP:0100059
Patient_000026\tHP:0010651,HP:0500020,HP:0100603,HP:0033443,HP:0008288
Patient_000027\tHP:0012330,HP:0034395,HP:0004066,HP:0000554,HP:0002257
Patient_000028\tHP:0031484,HP:0100423,HP:0030487,HP:0033538,HP:0003172
Patient_000029\tHP:0030901,HP:0025136,HP:0034367,HP:0034101,HP:0045017
Patient_000030\tHP:0100957,HP:0010027,HP:0010806,HP:0020185,HP:0001421
Patient_000031\tHP:0001671,HP:0003885,HP:0001464,HP:0000243,HP:0009549
Patient_000032\tHP:0003521,HP:0003109,HP:0000433,HP:0030647,HP:0100280
Patient_000033\tHP:0006394,HP:0031598,HP:0032199,HP:0010428,HP:0000108
Patient_000034\tHP:0001468,HP:0008689,HP:0410030,HP:0012226,HP:0011388
Patient_000035\tHP:0003536,HP:0001011,HP:0033262,HP:0009978,HP:0025586
Patient_000036\tHP:0031849,HP:0005244,HP:0001664,HP:0041233,HP:0030921
Patient_000037\tHP:0005616,HP:0003874,HP:0011744,HP:0033751,HP:0007971
Patient_000038\tHP:0012836,HP:0033858,HP:0003427,HP:0033880,HP:0030481
Patient_000039\tHP:0100369,HP:0040317,HP:0010561,HP:0010522,HP:0011339
Patient_000040\tHP:0005338,HP:0040179,HP:0004258,HP:0030589,HP:0032981
Patient_000041\tHP:0011758,HP:0033519,HP:0032010,HP:0030710,HP:0010419
Patient_000042\tHP:0002642,HP:0006335,HP:0009895,HP:0001928,HP:0003779
Patient_000043\tHP:0002867,HP:0030404,HP:0033495,HP:0011143,HP:0012642
Patient_000044\tHP:0033432,HP:0005195,HP:0009062,HP:0100617,HP:0033586
Patient_000045\tHP:0011740,HP:0100159,HP:0033480,HP:3000069,HP:0011394
Patient_000046\tHP:0033350,HP:0009840,HP:0040247,HP:0040204,HP:0033099
Patient_000047\tHP:0030323,HP:0032005,HP:0033675,HP:0033869,HP:0010850
Patient_000048\tHP:0003411,HP:0100953,HP:0005532,HP:0032119,HP:0012157
Patient_000049\tHP:0030592,HP:0011691,HP:0010498,HP:0030196,HP:0006414
Patient_000050\tHP:0001549,HP:0040258,HP:0007078,HP:0000657,HP:3000066
"""

comparisons = []

for patient in patient_source.splitlines():
    _, terms = patient.split("\t")
    comparisons.append(
        (
            main_patient,
            HPOSet.from_queries(terms.split(","))
        )
    )

similarities = set_batch_similarity(
    comparisons,
    kind="omim",
    method="graphic",
    combine="funSimMax"
)

(This functionality works well with dataframes, such as pandas or polars, adding the similarity scores as a new series)

Gene and Disease enrichments in HPOSets

Calculate the gene enrichment in several HPOSets in parallel

from pyhpo.helper import batch_gene_enrichment
from pyhpo.helper import batch_disease_enrichment
from pyhpo import Ontology, HPOSet

Ontology()

# 2 column table with
# - Patient Identifier
# - Comma separated HPO-terms
patient_source = """\
Patient_000001\tHP:0007587,HP:4000044,HP:0001845,HP:0041249,HP:0032648
Patient_000002\tHP:0034338,HP:0031955,HP:0003311,HP:0032564,HP:0100238
Patient_000003\tHP:0031096,HP:0410280,HP:0009899,HP:0002088,HP:0100204
Patient_000004\tHP:0030782,HP:0011439,HP:0009751,HP:0001433,HP:0030336
Patient_000005\tHP:0025029,HP:0033643,HP:0000957,HP:0005593,HP:0012486
Patient_000006\tHP:0009344,HP:0430016,HP:0005621,HP:0010043,HP:0030974
Patient_000007\tHP:0010760,HP:0009331,HP:0100119,HP:0012871,HP:0003653
Patient_000008\tHP:0001636,HP:0000561,HP:0009990,HP:3000075,HP:0007333
Patient_000009\tHP:0011675,HP:0011730,HP:0032729,HP:0032169,HP:0002888
Patient_000010\tHP:0004900,HP:0010761,HP:0020212,HP:0001806,HP:0033372
Patient_000011\tHP:0033336,HP:0025134,HP:0033815,HP:0032290,HP:0032472
Patient_000012\tHP:0004286,HP:0010543,HP:0007258,HP:0009582,HP:0005871
Patient_000013\tHP:0000273,HP:0031967,HP:0033305,HP:0010862,HP:0031750
Patient_000014\tHP:0031403,HP:0020134,HP:0011260,HP:0000826,HP:0030739
Patient_000015\tHP:0009966,HP:0034101,HP:0100736,HP:0032385,HP:0030152
Patient_000016\tHP:0011398,HP:0002165,HP:0000512,HP:0032028,HP:0007807
Patient_000017\tHP:0007465,HP:0031214,HP:0002575,HP:0007765,HP:0100404
Patient_000018\tHP:0033278,HP:0006937,HP:0008726,HP:0012142,HP:0100185
Patient_000019\tHP:0008365,HP:0033377,HP:0032463,HP:0033014,HP:0009338
Patient_000020\tHP:0012431,HP:0004415,HP:0001285,HP:0010747,HP:0008344
Patient_000021\tHP:0008722,HP:0003436,HP:0007313,HP:0031362,HP:0007236
Patient_000022\tHP:0000883,HP:0007542,HP:0012653,HP:0009411,HP:0031773
Patient_000023\tHP:0001083,HP:0030031,HP:0100349,HP:0001120,HP:0010835
Patient_000024\tHP:0410210,HP:0009341,HP:0100811,HP:0032710,HP:0410064
Patient_000025\tHP:0001056,HP:0005561,HP:0003690,HP:0040157,HP:0100059
Patient_000026\tHP:0010651,HP:0500020,HP:0100603,HP:0033443,HP:0008288
Patient_000027\tHP:0012330,HP:0034395,HP:0004066,HP:0000554,HP:0002257
Patient_000028\tHP:0031484,HP:0100423,HP:0030487,HP:0033538,HP:0003172
Patient_000029\tHP:0030901,HP:0025136,HP:0034367,HP:0034101,HP:0045017
Patient_000030\tHP:0100957,HP:0010027,HP:0010806,HP:0020185,HP:0001421
Patient_000031\tHP:0001671,HP:0003885,HP:0001464,HP:0000243,HP:0009549
Patient_000032\tHP:0003521,HP:0003109,HP:0000433,HP:0030647,HP:0100280
Patient_000033\tHP:0006394,HP:0031598,HP:0032199,HP:0010428,HP:0000108
Patient_000034\tHP:0001468,HP:0008689,HP:0410030,HP:0012226,HP:0011388
Patient_000035\tHP:0003536,HP:0001011,HP:0033262,HP:0009978,HP:0025586
Patient_000036\tHP:0031849,HP:0005244,HP:0001664,HP:0041233,HP:0030921
Patient_000037\tHP:0005616,HP:0003874,HP:0011744,HP:0033751,HP:0007971
Patient_000038\tHP:0012836,HP:0033858,HP:0003427,HP:0033880,HP:0030481
Patient_000039\tHP:0100369,HP:0040317,HP:0010561,HP:0010522,HP:0011339
Patient_000040\tHP:0005338,HP:0040179,HP:0004258,HP:0030589,HP:0032981
Patient_000041\tHP:0011758,HP:0033519,HP:0032010,HP:0030710,HP:0010419
Patient_000042\tHP:0002642,HP:0006335,HP:0009895,HP:0001928,HP:0003779
Patient_000043\tHP:0002867,HP:0030404,HP:0033495,HP:0011143,HP:0012642
Patient_000044\tHP:0033432,HP:0005195,HP:0009062,HP:0100617,HP:0033586
Patient_000045\tHP:0011740,HP:0100159,HP:0033480,HP:3000069,HP:0011394
Patient_000046\tHP:0033350,HP:0009840,HP:0040247,HP:0040204,HP:0033099
Patient_000047\tHP:0030323,HP:0032005,HP:0033675,HP:0033869,HP:0010850
Patient_000048\tHP:0003411,HP:0100953,HP:0005532,HP:0032119,HP:0012157
Patient_000049\tHP:0030592,HP:0011691,HP:0010498,HP:0030196,HP:0006414
Patient_000050\tHP:0001549,HP:0040258,HP:0007078,HP:0000657,HP:3000066
"""

hpo_sets = []
for patient in patient_source.splitlines():
    _, terms = patient.split("\t")
    hpo_sets.append(HPOSet.from_queries(terms.split(",")))

gene_enrichments = batch_gene_enrichment(hpo_sets)
disease_enrichments = batch_disease_enrichment(hpo_sets)

Development

HPO3 is completely written in Rust, so you require a stable Rust toolchain:

Rust installation instructions as on the official website:

curl --proto '=https' --tlsv1.2 -sSf https://sh.rustup.rs | sh

Then clone this repository:

git clone https://github.com/anergictcell/hpo3
cd hpo3

Create a Python virtual environment and install maturin:

virtualenv venv
source venv/bin/activate
pip install maturin

And finally build and install the Python library

maturin develop -r

Aaaaand, you're done:

python
from pyhpo import Ontology
Ontology()
for term in Ontology:
    print(term.name)

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

hpo3-0.2.3.tar.gz (1.8 MB view details)

Uploaded Source

Built Distributions

hpo3-0.2.3-pp39-pypy39_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (3.2 MB view details)

Uploaded PyPy manylinux: glibc 2.17+ x86-64

hpo3-0.2.3-pp39-pypy39_pp73-manylinux_2_17_s390x.manylinux2014_s390x.whl (3.4 MB view details)

Uploaded PyPy manylinux: glibc 2.17+ s390x

hpo3-0.2.3-pp39-pypy39_pp73-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl (3.3 MB view details)

Uploaded PyPy manylinux: glibc 2.17+ ppc64le

hpo3-0.2.3-pp39-pypy39_pp73-manylinux_2_17_armv7l.manylinux2014_armv7l.whl (3.2 MB view details)

Uploaded PyPy manylinux: glibc 2.17+ ARMv7l

hpo3-0.2.3-pp39-pypy39_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (3.2 MB view details)

Uploaded PyPy manylinux: glibc 2.17+ ARM64

hpo3-0.2.3-pp39-pypy39_pp73-manylinux_2_12_i686.manylinux2010_i686.whl (3.2 MB view details)

Uploaded PyPy manylinux: glibc 2.12+ i686

hpo3-0.2.3-pp38-pypy38_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (3.2 MB view details)

Uploaded PyPy manylinux: glibc 2.17+ x86-64

hpo3-0.2.3-pp38-pypy38_pp73-manylinux_2_17_s390x.manylinux2014_s390x.whl (3.4 MB view details)

Uploaded PyPy manylinux: glibc 2.17+ s390x

hpo3-0.2.3-pp38-pypy38_pp73-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl (3.3 MB view details)

Uploaded PyPy manylinux: glibc 2.17+ ppc64le

hpo3-0.2.3-pp38-pypy38_pp73-manylinux_2_17_armv7l.manylinux2014_armv7l.whl (3.2 MB view details)

Uploaded PyPy manylinux: glibc 2.17+ ARMv7l

hpo3-0.2.3-pp38-pypy38_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (3.2 MB view details)

Uploaded PyPy manylinux: glibc 2.17+ ARM64

hpo3-0.2.3-pp38-pypy38_pp73-manylinux_2_12_i686.manylinux2010_i686.whl (3.2 MB view details)

Uploaded PyPy manylinux: glibc 2.12+ i686

hpo3-0.2.3-pp37-pypy37_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (3.2 MB view details)

Uploaded PyPy manylinux: glibc 2.17+ x86-64

hpo3-0.2.3-pp37-pypy37_pp73-manylinux_2_17_s390x.manylinux2014_s390x.whl (3.4 MB view details)

Uploaded PyPy manylinux: glibc 2.17+ s390x

hpo3-0.2.3-pp37-pypy37_pp73-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl (3.3 MB view details)

Uploaded PyPy manylinux: glibc 2.17+ ppc64le

hpo3-0.2.3-pp37-pypy37_pp73-manylinux_2_17_armv7l.manylinux2014_armv7l.whl (3.2 MB view details)

Uploaded PyPy manylinux: glibc 2.17+ ARMv7l

hpo3-0.2.3-pp37-pypy37_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (3.2 MB view details)

Uploaded PyPy manylinux: glibc 2.17+ ARM64

hpo3-0.2.3-pp37-pypy37_pp73-manylinux_2_12_i686.manylinux2010_i686.whl (3.2 MB view details)

Uploaded PyPy manylinux: glibc 2.12+ i686

hpo3-0.2.3-cp312-cp312-manylinux_2_17_s390x.manylinux2014_s390x.whl (3.4 MB view details)

Uploaded CPython 3.12 manylinux: glibc 2.17+ s390x

hpo3-0.2.3-cp312-cp312-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl (3.3 MB view details)

Uploaded CPython 3.12 manylinux: glibc 2.17+ ppc64le

hpo3-0.2.3-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (3.2 MB view details)

Uploaded CPython 3.12 manylinux: glibc 2.17+ ARM64

hpo3-0.2.3-cp311-none-win_amd64.whl (2.2 MB view details)

Uploaded CPython 3.11 Windows x86-64

hpo3-0.2.3-cp311-none-win32.whl (2.1 MB view details)

Uploaded CPython 3.11 Windows x86

hpo3-0.2.3-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (3.2 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ x86-64

hpo3-0.2.3-cp311-cp311-manylinux_2_17_s390x.manylinux2014_s390x.whl (3.4 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ s390x

hpo3-0.2.3-cp311-cp311-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl (3.3 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ ppc64le

hpo3-0.2.3-cp311-cp311-manylinux_2_17_armv7l.manylinux2014_armv7l.whl (3.2 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ ARMv7l

hpo3-0.2.3-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (3.2 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ ARM64

hpo3-0.2.3-cp311-cp311-manylinux_2_12_i686.manylinux2010_i686.whl (3.2 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.12+ i686

hpo3-0.2.3-cp311-cp311-macosx_11_0_arm64.whl (2.3 MB view details)

Uploaded CPython 3.11 macOS 11.0+ ARM64

hpo3-0.2.3-cp311-cp311-macosx_10_7_x86_64.whl (2.3 MB view details)

Uploaded CPython 3.11 macOS 10.7+ x86-64

hpo3-0.2.3-cp310-none-win_amd64.whl (2.2 MB view details)

Uploaded CPython 3.10 Windows x86-64

hpo3-0.2.3-cp310-none-win32.whl (2.1 MB view details)

Uploaded CPython 3.10 Windows x86

hpo3-0.2.3-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (3.2 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ x86-64

hpo3-0.2.3-cp310-cp310-manylinux_2_17_s390x.manylinux2014_s390x.whl (3.4 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ s390x

hpo3-0.2.3-cp310-cp310-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl (3.3 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ ppc64le

hpo3-0.2.3-cp310-cp310-manylinux_2_17_armv7l.manylinux2014_armv7l.whl (3.2 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ ARMv7l

hpo3-0.2.3-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (3.2 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ ARM64

hpo3-0.2.3-cp310-cp310-manylinux_2_12_i686.manylinux2010_i686.whl (3.2 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.12+ i686

hpo3-0.2.3-cp310-cp310-macosx_11_0_arm64.whl (2.3 MB view details)

Uploaded CPython 3.10 macOS 11.0+ ARM64

hpo3-0.2.3-cp310-cp310-macosx_10_7_x86_64.whl (2.3 MB view details)

Uploaded CPython 3.10 macOS 10.7+ x86-64

hpo3-0.2.3-cp39-none-win_amd64.whl (2.2 MB view details)

Uploaded CPython 3.9 Windows x86-64

hpo3-0.2.3-cp39-none-win32.whl (2.1 MB view details)

Uploaded CPython 3.9 Windows x86

hpo3-0.2.3-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (3.2 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ x86-64

hpo3-0.2.3-cp39-cp39-manylinux_2_17_s390x.manylinux2014_s390x.whl (3.4 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ s390x

hpo3-0.2.3-cp39-cp39-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl (3.3 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ ppc64le

hpo3-0.2.3-cp39-cp39-manylinux_2_17_armv7l.manylinux2014_armv7l.whl (3.2 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ ARMv7l

hpo3-0.2.3-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (3.2 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ ARM64

hpo3-0.2.3-cp39-cp39-manylinux_2_12_i686.manylinux2010_i686.whl (3.2 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.12+ i686

hpo3-0.2.3-cp38-none-win_amd64.whl (2.2 MB view details)

Uploaded CPython 3.8 Windows x86-64

hpo3-0.2.3-cp38-none-win32.whl (2.1 MB view details)

Uploaded CPython 3.8 Windows x86

hpo3-0.2.3-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (3.2 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ x86-64

hpo3-0.2.3-cp38-cp38-manylinux_2_17_s390x.manylinux2014_s390x.whl (3.4 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ s390x

hpo3-0.2.3-cp38-cp38-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl (3.3 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ ppc64le

hpo3-0.2.3-cp38-cp38-manylinux_2_17_armv7l.manylinux2014_armv7l.whl (3.2 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ ARMv7l

hpo3-0.2.3-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (3.2 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ ARM64

hpo3-0.2.3-cp38-cp38-manylinux_2_12_i686.manylinux2010_i686.whl (3.2 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.12+ i686

hpo3-0.2.3-cp37-none-win_amd64.whl (2.2 MB view details)

Uploaded CPython 3.7 Windows x86-64

hpo3-0.2.3-cp37-none-win32.whl (2.1 MB view details)

Uploaded CPython 3.7 Windows x86

hpo3-0.2.3-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (3.2 MB view details)

Uploaded CPython 3.7m manylinux: glibc 2.17+ x86-64

hpo3-0.2.3-cp37-cp37m-manylinux_2_17_s390x.manylinux2014_s390x.whl (3.4 MB view details)

Uploaded CPython 3.7m manylinux: glibc 2.17+ s390x

hpo3-0.2.3-cp37-cp37m-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl (3.3 MB view details)

Uploaded CPython 3.7m manylinux: glibc 2.17+ ppc64le

hpo3-0.2.3-cp37-cp37m-manylinux_2_17_armv7l.manylinux2014_armv7l.whl (3.2 MB view details)

Uploaded CPython 3.7m manylinux: glibc 2.17+ ARMv7l

hpo3-0.2.3-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (3.2 MB view details)

Uploaded CPython 3.7m manylinux: glibc 2.17+ ARM64

hpo3-0.2.3-cp37-cp37m-manylinux_2_12_i686.manylinux2010_i686.whl (3.2 MB view details)

Uploaded CPython 3.7m manylinux: glibc 2.12+ i686

File details

Details for the file hpo3-0.2.3.tar.gz.

File metadata

  • Download URL: hpo3-0.2.3.tar.gz
  • Upload date:
  • Size: 1.8 MB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: maturin/0.15.0

File hashes

Hashes for hpo3-0.2.3.tar.gz
Algorithm Hash digest
SHA256 6f2ddffc16ba1864cf53c1882ab79840570acc737399e10f1b89a5ed065d189a
MD5 6d5137f66ac050488185953927f7f278
BLAKE2b-256 d05d5bdfded26fd1b528e5e01612d624c3da4f27b51b06f0b9ca446f9e1b5980

See more details on using hashes here.

Provenance

File details

Details for the file hpo3-0.2.3-pp39-pypy39_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for hpo3-0.2.3-pp39-pypy39_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 988a81c222ed47e17c52eebe211a52ae43030131837f2a395af059a2be7c059f
MD5 0ad8529ecd3949a43cf29ec315f0db9f
BLAKE2b-256 2eef02f1453c4d7735369be35b47af376fa6a5cbee35437ee095c702aef9fa06

See more details on using hashes here.

Provenance

File details

Details for the file hpo3-0.2.3-pp39-pypy39_pp73-manylinux_2_17_s390x.manylinux2014_s390x.whl.

File metadata

File hashes

Hashes for hpo3-0.2.3-pp39-pypy39_pp73-manylinux_2_17_s390x.manylinux2014_s390x.whl
Algorithm Hash digest
SHA256 e380e490b32eed88a11d9ace3e2a5932c7ff9f302b514657385df80029c34db8
MD5 4812d0770bfb79375d6bc880d7127fec
BLAKE2b-256 bbd6beaa943f6efd99a6e07d1e02da832f2b03ece47f4252015c3147fd66d781

See more details on using hashes here.

Provenance

File details

Details for the file hpo3-0.2.3-pp39-pypy39_pp73-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl.

File metadata

File hashes

Hashes for hpo3-0.2.3-pp39-pypy39_pp73-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl
Algorithm Hash digest
SHA256 9dafad6dfc279f9cdc5c31f92a93716d1084785f4d87d3a5ce9c00fe8f7797df
MD5 9a4dfea466b828a9e8740e0c35c90561
BLAKE2b-256 892a2b86cf559e54c66a4938789841244218cdb84ac19f552638ad80015ab26e

See more details on using hashes here.

Provenance

File details

Details for the file hpo3-0.2.3-pp39-pypy39_pp73-manylinux_2_17_armv7l.manylinux2014_armv7l.whl.

File metadata

File hashes

Hashes for hpo3-0.2.3-pp39-pypy39_pp73-manylinux_2_17_armv7l.manylinux2014_armv7l.whl
Algorithm Hash digest
SHA256 53ccb0d7d06afeab84e547e454c90c24e3e19aaee1103d5c2551f3284e0811c5
MD5 4b683db9f8a233e3785015b4b5f40bde
BLAKE2b-256 b086f07f5f31bedcf3e10b76c8c4cd10566d4599be33cc465a6f02fea548bdc9

See more details on using hashes here.

Provenance

File details

Details for the file hpo3-0.2.3-pp39-pypy39_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for hpo3-0.2.3-pp39-pypy39_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 004ce2f0c04d6055b2b6aaedb3134d74dee273c1a7762021c76fec38a4d00b6e
MD5 808ec2b91f4eac6d233b48694431d8bc
BLAKE2b-256 b59b47ae181dfe371b003f83031f184df3155c4a059099a7b1f3c5d2cd3467b7

See more details on using hashes here.

Provenance

File details

Details for the file hpo3-0.2.3-pp39-pypy39_pp73-manylinux_2_12_i686.manylinux2010_i686.whl.

File metadata

File hashes

Hashes for hpo3-0.2.3-pp39-pypy39_pp73-manylinux_2_12_i686.manylinux2010_i686.whl
Algorithm Hash digest
SHA256 0ccc79ddb09d2beb1ed61489f2c6fee0e6d2d2dcc32b2137df997a64e489c189
MD5 36a230eb40a4f1e625393181ef1fc7da
BLAKE2b-256 f1202b6dd617e9263b86e3d36ff6cbe839dbf2c2719bf54269b8b925aacf1d81

See more details on using hashes here.

Provenance

File details

Details for the file hpo3-0.2.3-pp38-pypy38_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for hpo3-0.2.3-pp38-pypy38_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 65bf253cacccc6abb943da711ff192fe1c5798d27191e74fee727b7e8dd9aadd
MD5 1ebb6fd4ddd51e10c801ee968912b50b
BLAKE2b-256 c05a13578fd5d0458da9ade474e5b3f4e8e7896a2afdaa020fd6b9847640cb63

See more details on using hashes here.

Provenance

File details

Details for the file hpo3-0.2.3-pp38-pypy38_pp73-manylinux_2_17_s390x.manylinux2014_s390x.whl.

File metadata

File hashes

Hashes for hpo3-0.2.3-pp38-pypy38_pp73-manylinux_2_17_s390x.manylinux2014_s390x.whl
Algorithm Hash digest
SHA256 041d805273352b732cfada1c025d7c6454a154503502bc3b9055721996a96343
MD5 32d16862a2abb0d12d1046180a4bab6b
BLAKE2b-256 4a7356b4be1912bd6299bf3af9a0c45278a9effc0dd58814ff2460531e18f313

See more details on using hashes here.

Provenance

File details

Details for the file hpo3-0.2.3-pp38-pypy38_pp73-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl.

File metadata

File hashes

Hashes for hpo3-0.2.3-pp38-pypy38_pp73-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl
Algorithm Hash digest
SHA256 978cd5e9f0276a1e441b89e3fd3c3dee8499f723700c76d6dfea5f25428172db
MD5 802f79c736529e948867e403fc6e2bdb
BLAKE2b-256 c62203e25d09800fd46c82069462752028a338c3d753b4d7fac02809a824fc4f

See more details on using hashes here.

Provenance

File details

Details for the file hpo3-0.2.3-pp38-pypy38_pp73-manylinux_2_17_armv7l.manylinux2014_armv7l.whl.

File metadata

File hashes

Hashes for hpo3-0.2.3-pp38-pypy38_pp73-manylinux_2_17_armv7l.manylinux2014_armv7l.whl
Algorithm Hash digest
SHA256 003fcf7a13ce968c5d677378d71b678646a5b78768896f3547da0a488fba534d
MD5 febc384f7fc62fdfbae23b3afcda8879
BLAKE2b-256 4f17bbf4a3b3c23835b764a0bf7687db00ad78331322c654962ab1816f1f966b

See more details on using hashes here.

Provenance

File details

Details for the file hpo3-0.2.3-pp38-pypy38_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for hpo3-0.2.3-pp38-pypy38_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 01cd2a91e7b920ff1c20cf139198cd6d33e0352fce11b069e97bb8963d6f13b2
MD5 f172ba229bb41cf62f649169c3fc9a84
BLAKE2b-256 c1c637df0e899741b3686417a80fb5702d4214546d808cb1da6a2b1b197aece3

See more details on using hashes here.

Provenance

File details

Details for the file hpo3-0.2.3-pp38-pypy38_pp73-manylinux_2_12_i686.manylinux2010_i686.whl.

File metadata

File hashes

Hashes for hpo3-0.2.3-pp38-pypy38_pp73-manylinux_2_12_i686.manylinux2010_i686.whl
Algorithm Hash digest
SHA256 f6ce8abddddb670bf1e538bccf0600805bddd6d2d0442ac27a3fad3d37974726
MD5 879a1e95aa3e33922e87e7de1643c9a5
BLAKE2b-256 f237d08a98eefa13e4b3e7586e3715d67c64019f15ed545f0f3d964528f50ab1

See more details on using hashes here.

Provenance

File details

Details for the file hpo3-0.2.3-pp37-pypy37_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for hpo3-0.2.3-pp37-pypy37_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 4a12f6da52bb43181ff22484bc371957c81bee9ff6202dcaf0bd237ecbd5b6e6
MD5 46a2f9a8fff66280203cb449faf5edc2
BLAKE2b-256 bd37cf273b37a8549696a33485440c52d4ef637a44f752c74e4e2d1dbff535cf

See more details on using hashes here.

Provenance

File details

Details for the file hpo3-0.2.3-pp37-pypy37_pp73-manylinux_2_17_s390x.manylinux2014_s390x.whl.

File metadata

File hashes

Hashes for hpo3-0.2.3-pp37-pypy37_pp73-manylinux_2_17_s390x.manylinux2014_s390x.whl
Algorithm Hash digest
SHA256 3ae281f6fee6c5b9a6d504d45fe8b4e93e7e7b8bd08d54379e301162efa41985
MD5 c4a836465feddb25d60d97987911cc67
BLAKE2b-256 ca74357bf7136bb43ed0b46d2b1090f18aeb481de269dc3c64daee145b2923ee

See more details on using hashes here.

Provenance

File details

Details for the file hpo3-0.2.3-pp37-pypy37_pp73-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl.

File metadata

File hashes

Hashes for hpo3-0.2.3-pp37-pypy37_pp73-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl
Algorithm Hash digest
SHA256 8d3ed2d282ff38f1f9638d80f6030852d315e1e11929ded0490cd4336b56ba53
MD5 a8e85c1c7fa30a9f9272a7c6f8909880
BLAKE2b-256 1378c9adcde40566709690b6cf1fa037c7114871b85140d46329bddb7baa4254

See more details on using hashes here.

Provenance

File details

Details for the file hpo3-0.2.3-pp37-pypy37_pp73-manylinux_2_17_armv7l.manylinux2014_armv7l.whl.

File metadata

File hashes

Hashes for hpo3-0.2.3-pp37-pypy37_pp73-manylinux_2_17_armv7l.manylinux2014_armv7l.whl
Algorithm Hash digest
SHA256 24610e7998c9289c455e0e54cb44d411f083f9256d37f1ef0068cafef43ce884
MD5 22a9371d89f7f61ca26499631036974c
BLAKE2b-256 89e142c7bafb1a69285366d69eaecc730ac46d569e99f5127ee47b1948c9260d

See more details on using hashes here.

Provenance

File details

Details for the file hpo3-0.2.3-pp37-pypy37_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for hpo3-0.2.3-pp37-pypy37_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 3c7f8c8687dce99354596a298a21d4f80b4a6ae54b8560cadb5da5bbfff9647e
MD5 99184ee74ca7250b8c8530b1e5dd0191
BLAKE2b-256 c98a6841b07f1d36a819ab9c11bc3d1c93eb4c878d987c3b68740cc6defb8546

See more details on using hashes here.

Provenance

File details

Details for the file hpo3-0.2.3-pp37-pypy37_pp73-manylinux_2_12_i686.manylinux2010_i686.whl.

File metadata

File hashes

Hashes for hpo3-0.2.3-pp37-pypy37_pp73-manylinux_2_12_i686.manylinux2010_i686.whl
Algorithm Hash digest
SHA256 baee6388104f4000b80e03747a69ac7f198272c169e9fcf19ae65ec520df6016
MD5 363cdd971f3c39cf333ecd482fb59416
BLAKE2b-256 fefc2b775362870abea271745c4467f52969ae997dc23b246973ce910cfb9e69

See more details on using hashes here.

Provenance

File details

Details for the file hpo3-0.2.3-cp312-cp312-manylinux_2_17_s390x.manylinux2014_s390x.whl.

File metadata

File hashes

Hashes for hpo3-0.2.3-cp312-cp312-manylinux_2_17_s390x.manylinux2014_s390x.whl
Algorithm Hash digest
SHA256 9898529deba283df6fc9e1fff23c9c8478913fec55f584ed079eba66b4908a93
MD5 e3de0ccb2708646ef77e67851050f362
BLAKE2b-256 90cb47c43b33b5ba06ac9c652b82c38a3fe096c545078029a6fb78b72a666c34

See more details on using hashes here.

Provenance

File details

Details for the file hpo3-0.2.3-cp312-cp312-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl.

File metadata

File hashes

Hashes for hpo3-0.2.3-cp312-cp312-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl
Algorithm Hash digest
SHA256 ce5dc828e7dbd17148cbecc2c3da31635d974c37038410d11b7ae7c3d1f9b5fa
MD5 76539d1624575c1c740422e786f7376c
BLAKE2b-256 4ddbeee1c93367c47d76bcccd3578e2eb52b0182143cc54d9ab5ff055745b335

See more details on using hashes here.

Provenance

File details

Details for the file hpo3-0.2.3-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for hpo3-0.2.3-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 e2c3a7d538ff3a655842e13b182d7d655fcface936859e3167b801ee03db376a
MD5 ddd0a2e4a3f24a8de31dba894ce95e6b
BLAKE2b-256 707197523e14d2236772059bea64c3d55eda4856814e566b4693adc39317fb1b

See more details on using hashes here.

Provenance

File details

Details for the file hpo3-0.2.3-cp311-none-win_amd64.whl.

File metadata

  • Download URL: hpo3-0.2.3-cp311-none-win_amd64.whl
  • Upload date:
  • Size: 2.2 MB
  • Tags: CPython 3.11, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: maturin/0.15.0

File hashes

Hashes for hpo3-0.2.3-cp311-none-win_amd64.whl
Algorithm Hash digest
SHA256 851385a61a9b08f0fc69e6d5ca59a196d3cc79a36d6ee642ac68ea757ab9e9a6
MD5 2a4f8ff20fca40e3da294dba9ffff56f
BLAKE2b-256 0a7f6c058ee2c06b6c9676d81f0d541b466852b3779eab308cfe005e90084463

See more details on using hashes here.

Provenance

File details

Details for the file hpo3-0.2.3-cp311-none-win32.whl.

File metadata

  • Download URL: hpo3-0.2.3-cp311-none-win32.whl
  • Upload date:
  • Size: 2.1 MB
  • Tags: CPython 3.11, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: maturin/0.15.0

File hashes

Hashes for hpo3-0.2.3-cp311-none-win32.whl
Algorithm Hash digest
SHA256 95d76d3a1f8043e315df90a344a71f97cb5f4cf3c3c76346f3f86db9d6b43602
MD5 9d8ec552f0c415cbc001172198369aca
BLAKE2b-256 1f89f32db1151a6ae35c6d2947e7bb60f7bf077724211cdd189c0be565f61f97

See more details on using hashes here.

Provenance

File details

Details for the file hpo3-0.2.3-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for hpo3-0.2.3-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 d2ded5fdc966bf4a8b31afa9b5712f3a71141424ac7de6f5384450ef5ac54d2a
MD5 2f609c41c30375fd3d8177931ae12841
BLAKE2b-256 2c7cbf7fc3f24e0a382140d8858643f50da8051ce746c945c306af78c06b219e

See more details on using hashes here.

Provenance

File details

Details for the file hpo3-0.2.3-cp311-cp311-manylinux_2_17_s390x.manylinux2014_s390x.whl.

File metadata

File hashes

Hashes for hpo3-0.2.3-cp311-cp311-manylinux_2_17_s390x.manylinux2014_s390x.whl
Algorithm Hash digest
SHA256 3630b950db66a1464d69bc5b0d41436d1efdd2fe751007dc665c01da34e08d79
MD5 db3b85d50a72d74b71f8f1dc16ae9afa
BLAKE2b-256 eb116c4145751dfc61d5e7f35acda9e45fe5aa9472023ed6a7cdcad3a1f38e27

See more details on using hashes here.

Provenance

File details

Details for the file hpo3-0.2.3-cp311-cp311-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl.

File metadata

File hashes

Hashes for hpo3-0.2.3-cp311-cp311-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl
Algorithm Hash digest
SHA256 f151673a3649a8c9e2a2b08892bcf6240442c16f2bd45db7c7e5ae0df428c394
MD5 a30076e71bbbab936f9a62063da13e35
BLAKE2b-256 5842ca10519f35c7a7599aa732660c9af54e6db358f65afe2c0e6afe7a0950ba

See more details on using hashes here.

Provenance

File details

Details for the file hpo3-0.2.3-cp311-cp311-manylinux_2_17_armv7l.manylinux2014_armv7l.whl.

File metadata

File hashes

Hashes for hpo3-0.2.3-cp311-cp311-manylinux_2_17_armv7l.manylinux2014_armv7l.whl
Algorithm Hash digest
SHA256 55b8e294ba85e4fdfcf5b5ad80ca2b486dfee6b25c68875d08c077026eb4c767
MD5 15872c87bc868baff0e69f480f1618ec
BLAKE2b-256 541bd4fe11b78083da9bb46cf52f2da710bdb0774f866e9f81c84f6a8e6cd616

See more details on using hashes here.

Provenance

File details

Details for the file hpo3-0.2.3-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for hpo3-0.2.3-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 09c6d3df4387c62f9d65344912bf93258e83a1ceb6a09004bdf390b90935253f
MD5 63bfd910402e32bea8d87f0978fd501e
BLAKE2b-256 a25812072490dc56c66902c85ce9d87d25309bf8d297f1c00fcbf062c248f2b6

See more details on using hashes here.

Provenance

File details

Details for the file hpo3-0.2.3-cp311-cp311-manylinux_2_12_i686.manylinux2010_i686.whl.

File metadata

File hashes

Hashes for hpo3-0.2.3-cp311-cp311-manylinux_2_12_i686.manylinux2010_i686.whl
Algorithm Hash digest
SHA256 7463558b26339bae04c8b73188e2ac249e232838643cc79202fd50de577b1fbd
MD5 1a6a15b62c7fc551434fb62c971d3452
BLAKE2b-256 9055cb513da883e0249aa9039f4f7bc66d630f3abbcbde54728fe37b790a7648

See more details on using hashes here.

Provenance

File details

Details for the file hpo3-0.2.3-cp311-cp311-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for hpo3-0.2.3-cp311-cp311-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 4a968407ade24f7845b46239ce48b23896764186660fd43cd7aacd2473dc28f1
MD5 6c13b11be271efd374c6ec83264ee3f3
BLAKE2b-256 988e84e0407ee93e32900d6d0813dfbde0b0a1dc5c7f3b9dd34d690b975c6e11

See more details on using hashes here.

Provenance

File details

Details for the file hpo3-0.2.3-cp311-cp311-macosx_10_7_x86_64.whl.

File metadata

File hashes

Hashes for hpo3-0.2.3-cp311-cp311-macosx_10_7_x86_64.whl
Algorithm Hash digest
SHA256 68bb9fe3aecc16bf996d53cef08ac1e5434c3c5eab95fb3d6f77dfa42a5261ac
MD5 0ce4751a7b1c0987a6564021cae2a430
BLAKE2b-256 0ad3dbcd08b3ec8cd9d9c9a5447500c4c10a87198907d4497288e9504530af37

See more details on using hashes here.

Provenance

File details

Details for the file hpo3-0.2.3-cp310-none-win_amd64.whl.

File metadata

  • Download URL: hpo3-0.2.3-cp310-none-win_amd64.whl
  • Upload date:
  • Size: 2.2 MB
  • Tags: CPython 3.10, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: maturin/0.15.0

File hashes

Hashes for hpo3-0.2.3-cp310-none-win_amd64.whl
Algorithm Hash digest
SHA256 482ed8ea4ed8533cf6f76285f0e5993cf59b56b38ea9667bd1e7b0bcdb042ad4
MD5 19dcb8243dda2bea08051ec6f45f85b2
BLAKE2b-256 8070fdc84c4f10e683a53917f773bab29cf65aa07f8a33b1c7db388a67497183

See more details on using hashes here.

Provenance

File details

Details for the file hpo3-0.2.3-cp310-none-win32.whl.

File metadata

  • Download URL: hpo3-0.2.3-cp310-none-win32.whl
  • Upload date:
  • Size: 2.1 MB
  • Tags: CPython 3.10, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: maturin/0.15.0

File hashes

Hashes for hpo3-0.2.3-cp310-none-win32.whl
Algorithm Hash digest
SHA256 c8e32939a1293a11d2d948c7622df12ebeb1f79d33f22f7fca532a4989aca621
MD5 13daededa5dc01d024ca3e73e74e7e3a
BLAKE2b-256 3edb43e2ec78f56560152f5dc9d62f9876fb74f1e1aa4dc4efd32ee600ef9ed2

See more details on using hashes here.

Provenance

File details

Details for the file hpo3-0.2.3-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for hpo3-0.2.3-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 c8346393f88735cedb746c3959b27678e75712962453bd0a1243e630d64dfd12
MD5 1404f1e4b1cb540621bb40d58fd15397
BLAKE2b-256 7b4c899685bad50bca2a937d683a6c629c8ee36a845281657ecc3365320cf367

See more details on using hashes here.

Provenance

File details

Details for the file hpo3-0.2.3-cp310-cp310-manylinux_2_17_s390x.manylinux2014_s390x.whl.

File metadata

File hashes

Hashes for hpo3-0.2.3-cp310-cp310-manylinux_2_17_s390x.manylinux2014_s390x.whl
Algorithm Hash digest
SHA256 a7dd4d632de290da63501ad0847ac0e47f5af5d582f16db68e996bfe10b2c534
MD5 7483bb168e0858a16250b153960e4db1
BLAKE2b-256 cc57649e07ff673d21f402c87af4b2ad4298969fb02c052e16863e44653d5230

See more details on using hashes here.

Provenance

File details

Details for the file hpo3-0.2.3-cp310-cp310-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl.

File metadata

File hashes

Hashes for hpo3-0.2.3-cp310-cp310-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl
Algorithm Hash digest
SHA256 875de6602fd73fc74f133dcb61f2f85cd572946ad7eae2d4b7dba5b5d3003348
MD5 9253bfcb8b4f93b40ea1b1bc9c526912
BLAKE2b-256 690ec76428fa3f2a6dd2822f55528d261eb5f49879308286158fec4726cbf068

See more details on using hashes here.

Provenance

File details

Details for the file hpo3-0.2.3-cp310-cp310-manylinux_2_17_armv7l.manylinux2014_armv7l.whl.

File metadata

File hashes

Hashes for hpo3-0.2.3-cp310-cp310-manylinux_2_17_armv7l.manylinux2014_armv7l.whl
Algorithm Hash digest
SHA256 538d56adcb316f6e245177584f3eb91b4b6ccc4043246c487082f0ac5e0533bc
MD5 e15357303942ee0e093b6aa9ec308b6a
BLAKE2b-256 e498524e9a1077feae4818dd2ec0c74a05effd411a861cad89828d4e8f039047

See more details on using hashes here.

Provenance

File details

Details for the file hpo3-0.2.3-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for hpo3-0.2.3-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 566bb1a016204675efdc164d3d62809bc41abe87c8ba5250219dcdfda994cb0e
MD5 488a4336fc246436ad69a6c61b26f61d
BLAKE2b-256 5de69832a5a4145bb41e3f4b29fa680c0b1ccc3f481deab9b6141493fd078f47

See more details on using hashes here.

Provenance

File details

Details for the file hpo3-0.2.3-cp310-cp310-manylinux_2_12_i686.manylinux2010_i686.whl.

File metadata

File hashes

Hashes for hpo3-0.2.3-cp310-cp310-manylinux_2_12_i686.manylinux2010_i686.whl
Algorithm Hash digest
SHA256 7d8016f01abf1817c0ede4856b58b39e17cd2c8ca32cf33b785a7175d6b5b20e
MD5 acca2332e4cad44abaf54d6f7eb9b158
BLAKE2b-256 344f362e9251d663b6a62935fdb90a8d5a642aa5bdd8f8115d6da7978f7bcf3a

See more details on using hashes here.

Provenance

File details

Details for the file hpo3-0.2.3-cp310-cp310-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for hpo3-0.2.3-cp310-cp310-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 8dd581218513f5cc921b0b44e08d3d62f05d5852b7ab79236c485b56b0b5531d
MD5 6e82031df6786f0c1cc9b33094553b30
BLAKE2b-256 a75951985852d815e56c197f61e966dd795c70df6513e8fc858374700266c7b6

See more details on using hashes here.

Provenance

File details

Details for the file hpo3-0.2.3-cp310-cp310-macosx_10_7_x86_64.whl.

File metadata

File hashes

Hashes for hpo3-0.2.3-cp310-cp310-macosx_10_7_x86_64.whl
Algorithm Hash digest
SHA256 6e05a610c65fb87a882fee40ed7e071404dfc7e08c85969274fa23ba5393881e
MD5 f5c5a67fd9c09b12e133ccad345a6ce4
BLAKE2b-256 80c2b4c81c9f0fe390dd11610039d82d8800236f4ec6b9e18010bc8411bbc186

See more details on using hashes here.

Provenance

File details

Details for the file hpo3-0.2.3-cp39-none-win_amd64.whl.

File metadata

  • Download URL: hpo3-0.2.3-cp39-none-win_amd64.whl
  • Upload date:
  • Size: 2.2 MB
  • Tags: CPython 3.9, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: maturin/0.15.0

File hashes

Hashes for hpo3-0.2.3-cp39-none-win_amd64.whl
Algorithm Hash digest
SHA256 ec91c010eaca0980a901a15802f7b5ac6f64b385ab640a3844ac463630d50856
MD5 c44dd71d1592f8e136c9f23e1bd5af91
BLAKE2b-256 db365d051fae21baa38418c07cd5369a92e8ebcc5336af47774111b26de0c1c4

See more details on using hashes here.

Provenance

File details

Details for the file hpo3-0.2.3-cp39-none-win32.whl.

File metadata

  • Download URL: hpo3-0.2.3-cp39-none-win32.whl
  • Upload date:
  • Size: 2.1 MB
  • Tags: CPython 3.9, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: maturin/0.15.0

File hashes

Hashes for hpo3-0.2.3-cp39-none-win32.whl
Algorithm Hash digest
SHA256 dd01d89ed36e78970d28d7eb12837a9482967b086af0e9c411b8015f90652b9a
MD5 b1dc1cfed208d068e66adef2dbe197ef
BLAKE2b-256 dc27822325ef7ddff2aa9b0469c89b70cf227b9233fcb4d0522eaf6de0df9155

See more details on using hashes here.

Provenance

File details

Details for the file hpo3-0.2.3-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for hpo3-0.2.3-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 6cfda958bcb7525bf4e8d6c485f87a481c71aa9567edff14b955ad2b77fd21b2
MD5 58c64379cb690ec4a445d6642bac23cf
BLAKE2b-256 dee88969da5666e4df7c0c61ae65621894976854203a41fe1b4562879e6e0a6d

See more details on using hashes here.

Provenance

File details

Details for the file hpo3-0.2.3-cp39-cp39-manylinux_2_17_s390x.manylinux2014_s390x.whl.

File metadata

File hashes

Hashes for hpo3-0.2.3-cp39-cp39-manylinux_2_17_s390x.manylinux2014_s390x.whl
Algorithm Hash digest
SHA256 a7332f481ba4730396a0255ded303b4788df935a261a05e63f113a70cb814855
MD5 31c0c292e3005fd3f6f3786e4c461bdd
BLAKE2b-256 83746ee52676fed5a91ce340500fa3b99920b91ae667a3eca07404a9c5122727

See more details on using hashes here.

Provenance

File details

Details for the file hpo3-0.2.3-cp39-cp39-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl.

File metadata

File hashes

Hashes for hpo3-0.2.3-cp39-cp39-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl
Algorithm Hash digest
SHA256 736e11a470b96c4c70eef992ddc437ba803d76431192f85841e86a111f9ecabd
MD5 f2e7757aa19d92a95811857bbbdd751e
BLAKE2b-256 8817ba053465421eb11cf81b44b7fbd9ca03ebd25b9308703a2567d183c23398

See more details on using hashes here.

Provenance

File details

Details for the file hpo3-0.2.3-cp39-cp39-manylinux_2_17_armv7l.manylinux2014_armv7l.whl.

File metadata

File hashes

Hashes for hpo3-0.2.3-cp39-cp39-manylinux_2_17_armv7l.manylinux2014_armv7l.whl
Algorithm Hash digest
SHA256 47ca09dc8a3939e28838cfe72d80570b73932299a4e24d14c20f9db7568b8551
MD5 a6e0167fafddb7dcd146fd5ba02eff4a
BLAKE2b-256 0d08762c2b99defdc3e66bebe4adb37caccdd016cc351c8e58919a7560265a71

See more details on using hashes here.

Provenance

File details

Details for the file hpo3-0.2.3-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for hpo3-0.2.3-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 c264f3b4b68ee797d5f4c51f62416f4b4bb8c65228c014c3d69ab6809877d570
MD5 358a68e985ff476163fdf766b6423ccb
BLAKE2b-256 80275b505f6c62b759d596829a45a740ef649665f7eae8577bdadcd6dc5a84b1

See more details on using hashes here.

Provenance

File details

Details for the file hpo3-0.2.3-cp39-cp39-manylinux_2_12_i686.manylinux2010_i686.whl.

File metadata

File hashes

Hashes for hpo3-0.2.3-cp39-cp39-manylinux_2_12_i686.manylinux2010_i686.whl
Algorithm Hash digest
SHA256 32386b5498d3db3adef406ca06fc78e24c8e5ba67b6d7b4fc8c0caf460413b47
MD5 6e0534b8d23c2c57e71be7a05c12d33c
BLAKE2b-256 7cd78d5accc65666a1b7de69a09a652e127430d1ccc178cb3a5bb258aaad0b8c

See more details on using hashes here.

Provenance

File details

Details for the file hpo3-0.2.3-cp38-none-win_amd64.whl.

File metadata

  • Download URL: hpo3-0.2.3-cp38-none-win_amd64.whl
  • Upload date:
  • Size: 2.2 MB
  • Tags: CPython 3.8, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: maturin/0.15.0

File hashes

Hashes for hpo3-0.2.3-cp38-none-win_amd64.whl
Algorithm Hash digest
SHA256 872a5906327ff77de6e52c87bc17e2205d43fd2191d551b1a21df81e8d54af86
MD5 5e325e4a01a9454ed1cd27efee480b55
BLAKE2b-256 8f1a863ec37635850b6cb80b8c50d5484644de35144a0b8648e58ae9814145c1

See more details on using hashes here.

Provenance

File details

Details for the file hpo3-0.2.3-cp38-none-win32.whl.

File metadata

  • Download URL: hpo3-0.2.3-cp38-none-win32.whl
  • Upload date:
  • Size: 2.1 MB
  • Tags: CPython 3.8, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: maturin/0.15.0

File hashes

Hashes for hpo3-0.2.3-cp38-none-win32.whl
Algorithm Hash digest
SHA256 9ea7a123a9d5683f5ba8ffa08789ba651e1b943af4deffaf6194f61743b26d67
MD5 3a0e54af45437ac13fc4e9642eccab06
BLAKE2b-256 c986bec05e4b10f71cf083c2f7f375111d68ba3bbde96fb27f3a3927c781ffd5

See more details on using hashes here.

Provenance

File details

Details for the file hpo3-0.2.3-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for hpo3-0.2.3-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 e12d261dc552ce2cceef53f3ca36e4e95f4fa1b4dea52ff7e078aaba5c0ffdb6
MD5 9c7d5d59d0c0708574b4298cf69eda4e
BLAKE2b-256 7f5e54500c0946e1b27f7ec980e6fd8327d1fba4b012edd6d7f03e4a2550f6b0

See more details on using hashes here.

Provenance

File details

Details for the file hpo3-0.2.3-cp38-cp38-manylinux_2_17_s390x.manylinux2014_s390x.whl.

File metadata

File hashes

Hashes for hpo3-0.2.3-cp38-cp38-manylinux_2_17_s390x.manylinux2014_s390x.whl
Algorithm Hash digest
SHA256 76186cec033ff64cd300084f2422cb8bb530e18785a65a29011b0e9d3b6295ac
MD5 f38a9fddf9404d4858d73e9c37fe0917
BLAKE2b-256 a937ab0fcb4733d821d217be76b8393340b73dbabee67911ae60ea9d58e976b6

See more details on using hashes here.

Provenance

File details

Details for the file hpo3-0.2.3-cp38-cp38-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl.

File metadata

File hashes

Hashes for hpo3-0.2.3-cp38-cp38-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl
Algorithm Hash digest
SHA256 93fdee4d686f4081eefcc508123f9407fdcee75818ddc44a35e3e86dc14313bb
MD5 716df813be340085d7e38fcf76ab2853
BLAKE2b-256 e0314929d7376d6b17d49022c1b6944e42a088e017113cbc4ca6f443f127a587

See more details on using hashes here.

Provenance

File details

Details for the file hpo3-0.2.3-cp38-cp38-manylinux_2_17_armv7l.manylinux2014_armv7l.whl.

File metadata

File hashes

Hashes for hpo3-0.2.3-cp38-cp38-manylinux_2_17_armv7l.manylinux2014_armv7l.whl
Algorithm Hash digest
SHA256 c81cb79bfbe7df766b0de0673367dc33c82984106d3f1994a192611df4dbf6db
MD5 9bbde37d1150c0c4848a5787f802fb53
BLAKE2b-256 e26cf105111ab4274ebac7969b1937fa112d2f45ec7d25f954941c0efa984105

See more details on using hashes here.

Provenance

File details

Details for the file hpo3-0.2.3-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for hpo3-0.2.3-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 b18647e2222a3c7aa582c43df43e813db9f85e9ec0a887890eb8932546f2f477
MD5 2179ebf0a485650a29b13e88c2b80762
BLAKE2b-256 7aa07c773a5e5ec61db4a10e1c20f6ce7ae5a06a9eb155a837d72361e24b2762

See more details on using hashes here.

Provenance

File details

Details for the file hpo3-0.2.3-cp38-cp38-manylinux_2_12_i686.manylinux2010_i686.whl.

File metadata

File hashes

Hashes for hpo3-0.2.3-cp38-cp38-manylinux_2_12_i686.manylinux2010_i686.whl
Algorithm Hash digest
SHA256 6cf4ef671aba6fd19409ef422c8c70419ee0a3a0bd116c94f5f12ce978447d9d
MD5 fa87ebc932d18557ce9d7d97be1015e0
BLAKE2b-256 c31f28bb1648d7788b3bb28ff3f7047683c07117afe972198ee3c788eac52ff3

See more details on using hashes here.

Provenance

File details

Details for the file hpo3-0.2.3-cp37-none-win_amd64.whl.

File metadata

  • Download URL: hpo3-0.2.3-cp37-none-win_amd64.whl
  • Upload date:
  • Size: 2.2 MB
  • Tags: CPython 3.7, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: maturin/0.15.0

File hashes

Hashes for hpo3-0.2.3-cp37-none-win_amd64.whl
Algorithm Hash digest
SHA256 7f20e22f54698cba2fbe9cba5dbb5b9eccbbef4bee302162563a4c4248f7bc03
MD5 611e1b94e0c0eb81e6071808e41aa073
BLAKE2b-256 cf8f77ec482193f5ca4e4318e21c0eb153810457b1fe58a2d06892a345dcb685

See more details on using hashes here.

Provenance

File details

Details for the file hpo3-0.2.3-cp37-none-win32.whl.

File metadata

  • Download URL: hpo3-0.2.3-cp37-none-win32.whl
  • Upload date:
  • Size: 2.1 MB
  • Tags: CPython 3.7, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: maturin/0.15.0

File hashes

Hashes for hpo3-0.2.3-cp37-none-win32.whl
Algorithm Hash digest
SHA256 ca31c46582386bed043136957f6622f2beb3ca73fd7dfb332b497b30c604ab36
MD5 dbe8e894decb872f9dd31eeb7397fe00
BLAKE2b-256 4cb91ded40cc9cf1ffa6767be364887d51ecbdfa6b0252284e3e0499fb6f8d19

See more details on using hashes here.

Provenance

File details

Details for the file hpo3-0.2.3-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for hpo3-0.2.3-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 243fc7c787e85ac42a5b672d9bee5f19859c013b7c5981940cce88543eee7de6
MD5 285212e5c99b6fc66c498898e45ca53e
BLAKE2b-256 c26ad882de8a34f58b6a20ac33b3714d4d03c2ed2a63bee290ae01cfcab78e26

See more details on using hashes here.

Provenance

File details

Details for the file hpo3-0.2.3-cp37-cp37m-manylinux_2_17_s390x.manylinux2014_s390x.whl.

File metadata

File hashes

Hashes for hpo3-0.2.3-cp37-cp37m-manylinux_2_17_s390x.manylinux2014_s390x.whl
Algorithm Hash digest
SHA256 597bb9f2168526e47660c0cf8de328838a93d6394c9ba00174eb144d000dafce
MD5 386f314fa284944be8ec25fed68d67c6
BLAKE2b-256 822dab8f89957b101e34895cc670ef343ec25024ee19fa50083ec7b79bac97f9

See more details on using hashes here.

Provenance

File details

Details for the file hpo3-0.2.3-cp37-cp37m-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl.

File metadata

File hashes

Hashes for hpo3-0.2.3-cp37-cp37m-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl
Algorithm Hash digest
SHA256 c69cb978a2d38a7541d3c62df3ae43293d57ab360df87da66e495580803f1c65
MD5 07af628567f9cef1f9e74904306fc9c1
BLAKE2b-256 bb18b7a3f055994c1c94c1b62ca8748a58c5030fdf77939ba55505dbddc39413

See more details on using hashes here.

Provenance

File details

Details for the file hpo3-0.2.3-cp37-cp37m-manylinux_2_17_armv7l.manylinux2014_armv7l.whl.

File metadata

File hashes

Hashes for hpo3-0.2.3-cp37-cp37m-manylinux_2_17_armv7l.manylinux2014_armv7l.whl
Algorithm Hash digest
SHA256 a6a1ba1dc283eb0de3a1022eba1874c97007a027e5d4eb0ade3b76b31d28e51d
MD5 55015072f73ca4a32f2f27685159b0a3
BLAKE2b-256 a036d9b4ab65b081d2343481673c8c4432c0c30930827c86910e3bf46d4b6b8f

See more details on using hashes here.

Provenance

File details

Details for the file hpo3-0.2.3-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for hpo3-0.2.3-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 cd3072736d4ad2a917c87542140c727eb3b8242664a3cff80a46d93fe1d964f4
MD5 aaf1bcf6f4c1a6d73cd38071f33d37d0
BLAKE2b-256 f867b0e6e3ece66f29f6ef62fb9de4f8bd36d6996a8cd790a1ab38dfbb73747f

See more details on using hashes here.

Provenance

File details

Details for the file hpo3-0.2.3-cp37-cp37m-manylinux_2_12_i686.manylinux2010_i686.whl.

File metadata

File hashes

Hashes for hpo3-0.2.3-cp37-cp37m-manylinux_2_12_i686.manylinux2010_i686.whl
Algorithm Hash digest
SHA256 7f65c21fc59b5a627155e7e7f9347c6dc8b57d5a20438e95f840292fe3b5d8dd
MD5 d94373834886cf71a2b04a246ddf9092
BLAKE2b-256 63c5e02128c7c4c3f4b41f5d0fc4d734450dab08c02143494a7e010be1a7ef10

See more details on using hashes here.

Provenance

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page