Skip to main content

Hyperparameter Optimization for sklearn

Project description

# hyperopt-sklearn

[Hyperopt-sklearn](http://hyperopt.github.com/hyperopt-sklearn/) is
[Hyperopt](http://hyperopt.github.com/hyperopt)-based model selection among machine learning algorithms in
[scikit-learn](http://scikit-learn.org/).

See how to use hyperopt-sklearn through [examples](http://hyperopt.github.io/hyperopt-sklearn/#documentation)
or older
[notebooks](http://nbviewer.ipython.org/github/hyperopt/hyperopt-sklearn/tree/master/notebooks)


## Installation

Installation from a git clone using pip is supported:

git clone git@github.com:hyperopt/hyperopt-sklearn.git
(cd hyperopt-sklearn && pip install -e .)

## Usage

If you are familiar with sklearn, adding the hyperparameter search with hyperopt-sklearn is only a one line change from the standard pipeline.

```
from hpsklearn import HyperoptEstimator, svc
from sklearn import svm

# Load Data
# ...

if use_hpsklearn:
estim = HyperoptEstimator(classifier=svc('mySVC'))
else:
estim = svm.SVC()

estim.fit(X_train, y_train)

print(estim.score(X_test, y_test))
# <<show score here>>
```

Complete example using the Iris dataset:

```
from hpsklearn import HyperoptEstimator, any_classifier
from sklearn.datasets import load_iris
from hyperopt import tpe
import numpy as np

# Download the data and split into training and test sets

iris = load_iris()

X = iris.data
y = iris.target

test_size = int(0.2 * len(y))
np.random.seed(13)
indices = np.random.permutation(len(X))
X_train = X[ indices[:-test_size]]
y_train = y[ indices[:-test_size]]
X_test = X[ indices[-test_size:]]
y_test = y[ indices[-test_size:]]

# Instantiate a HyperoptEstimator with the search space and number of evaluations

estim = HyperoptEstimator(classifier=any_classifier('my_clf'),
preprocessing=any_preprocessing('my_pre'),
algo=tpe.suggest,
max_evals=100,
trial_timeout=120)

# Search the hyperparameter space based on the data

estim.fit( X_train, y_train )

# Show the results

print( estim.score( X_test, y_test ) )
# 1.0

print( estim.best_model() )
# {'learner': ExtraTreesClassifier(bootstrap=False, class_weight=None, criterion='gini',
# max_depth=3, max_features='log2', max_leaf_nodes=None,
# min_impurity_decrease=0.0, min_impurity_split=None,
# min_samples_leaf=1, min_samples_split=2,
# min_weight_fraction_leaf=0.0, n_estimators=13, n_jobs=1,
# oob_score=False, random_state=1, verbose=False,
# warm_start=False), 'preprocs': (), 'ex_preprocs': ()}
```

Here's an example using MNIST and being more specific on the classifier and preprocessing.

```
from hpsklearn import HyperoptEstimator, extra_trees
from sklearn.datasets import fetch_mldata
from hyperopt import tpe
import numpy as np

# Download the data and split into training and test sets

digits = fetch_mldata('MNIST original')

X = digits.data
y = digits.target

test_size = int(0.2 * len(y))
np.random.seed(13)
indices = np.random.permutation(len(X))
X_train = X[ indices[:-test_size]]
y_train = y[ indices[:-test_size]]
X_test = X[ indices[-test_size:]]
y_test = y[ indices[-test_size:]]

# Instantiate a HyperoptEstimator with the search space and number of evaluations

estim = HyperoptEstimator(classifier=extra_trees('my_clf'),
preprocessing=[],
algo=tpe.suggest,
max_evals=10,
trial_timeout=300)

# Search the hyperparameter space based on the data

estim.fit( X_train, y_train )

# Show the results

print( estim.score( X_test, y_test ) )
# 0.962785714286

print( estim.best_model() )
# {'learner': ExtraTreesClassifier(bootstrap=True, class_weight=None, criterion='entropy',
# max_depth=None, max_features=0.959202875857,
# max_leaf_nodes=None, min_impurity_decrease=0.0,
# min_impurity_split=None, min_samples_leaf=1,
# min_samples_split=2, min_weight_fraction_leaf=0.0,
# n_estimators=20, n_jobs=1, oob_score=False, random_state=3,
# verbose=False, warm_start=False), 'preprocs': (), 'ex_preprocs': ()}
```

## Available Components

Not all of the classifiers/regressors/preprocessing from sklearn have been implemented yet.
A list of those currently available is shown below.
If there is something you would like that is not on the list, feel free to make an issue or a pull request!
The source code for implementing these functions is found [here](https://github.com/hyperopt/hyperopt-sklearn/blob/master/hpsklearn/components.py)

### Classifiers

```
svc
svc_linear
svc_rbf
svc_poly
svc_sigmoid
liblinear_svc

knn

ada_boost
gradient_boosting

random_forest
extra_trees
decision_tree

sgd

xgboost_classification

multinomial_nb
gaussian_nb

passive_aggressive

linear_discriminant_analysis
quadratic_discriminant_analysis

rbm

colkmeans

one_vs_rest
one_vs_one
output_code

```

For a simple generic search space across many classifiers, use `any_classifier`. If your data is in a sparse matrix format, use `any_sparse_classifier`.

### Regressors

```
svr
svr_linear
svr_rbf
svr_poly
svr_sigmoid

knn_regression

ada_boost_regression
gradient_boosting_regression

random_forest_regression
extra_trees_regression

sgd_regression

xgboost_regression
```

For a simple generic search space across many regressors, use `any_regressor`. If your data is in a sparse matrix format, use `any_sparse_regressor`.

### Preprocessing

```
pca

one_hot_encoder

standard_scaler
min_max_scaler
normalizer

ts_lagselector

tfidf

```

For a simple generic search space across many preprocessing algorithms, use `any_preprocessing`.
If you are working with raw text data, use `any_text_preprocessing`.
Currently only TFIDF is used for text, but more may be added in the future.
Note that the `preprocessing` parameter in `HyperoptEstimator` is expecting a list, since various preprocessing steps can be chained together.
The generic search space functions `any_preprocessing` and `any_text_preprocessing` already return a list, but the others do not so they should be wrapped in a list.
If you do not want to do any preprocessing, pass in an empty list `[]`.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

hpsklearn-0.1.0.tar.gz (26.5 kB view details)

Uploaded Source

File details

Details for the file hpsklearn-0.1.0.tar.gz.

File metadata

  • Download URL: hpsklearn-0.1.0.tar.gz
  • Upload date:
  • Size: 26.5 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No

File hashes

Hashes for hpsklearn-0.1.0.tar.gz
Algorithm Hash digest
SHA256 3a320062eb3296b35cccac87ad8b28b95dbc5f1fad22dc81e911f26d5b491cb7
MD5 839ae12cc13d7d49ca511622c56bcc1d
BLAKE2b-256 cecb61b99f73621e2692abd0e730f7888a9983d01f626868336fa1db1d57bc1e

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page