Skip to main content

Hyperparameter Optimization for sklearn, compneurobilbaolab unofficial version.

Project description

# hyperopt-sklearn (CompNeuroBilbao Fork)

## DISCLAIMER THIS IS A FORK MADE BY CompNeuroLabBilbao TO PUBLISH THIS PACKAGE TO PyPI IN ORDER TO USE IT IN OTHER PROJECTS, SPECIFICALLY TO ADD IT TO [ageml](https://github.com/compneurobilbao/ageml).

The functional code in this fork has NOT been altered in any way, publishing-related files and this README.md file have been modified.

— [Hyperopt-sklearn](https://github.com/hyperopt/hyperopt-sklearn) is [Hyperopt](https://github.com/hyperopt/hyperopt)-based model selection among machine learning algorithms in [scikit-learn](http://scikit-learn.org/).

See how to use hyperopt-sklearn through [examples](https://hyperopt.github.io/hyperopt-sklearn/#examples). More examples can be found in the Example Usage section of the SciPy paper: Komer B., Bergstra J., and Eliasmith C. “Hyperopt-Sklearn: automatic hyperparameter configuration for Scikit-learn” Proc. SciPy 2014. http://conference.scipy.org/proceedings/scipy2014/pdfs/komer.pdf

## Installation

Installation from the GitHub repository is supported using pip:

pip install git+https://github.com/hyperopt/hyperopt-sklearn

Optionally you can install a specific tag, branch or commit:

pip install git+https://github.com/hyperopt/hyperopt-sklearn@1.0.3 pip install git+https://github.com/hyperopt/hyperopt-sklearn@master pip install git+https://github.com/hyperopt/hyperopt-sklearn@fd718c44fc440bd6e2718ec1442b1af58cafcb18

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

hpsklearn_compneurobilbao-1.0.3.tar.gz (68.8 kB view details)

Uploaded Source

Built Distribution

hpsklearn_compneurobilbao-1.0.3-py3-none-any.whl (133.3 kB view details)

Uploaded Python 3

File details

Details for the file hpsklearn_compneurobilbao-1.0.3.tar.gz.

File metadata

File hashes

Hashes for hpsklearn_compneurobilbao-1.0.3.tar.gz
Algorithm Hash digest
SHA256 cb560a57c525868ea75f72817e630bdbc21d3476c92afd5dc93e87becb18318f
MD5 037d1b9f675183f585fc7a67ce53f286
BLAKE2b-256 8752b60ce88038bc31d5d55dc2012045c453660efbd12da17eb5c3e576d92201

See more details on using hashes here.

File details

Details for the file hpsklearn_compneurobilbao-1.0.3-py3-none-any.whl.

File metadata

File hashes

Hashes for hpsklearn_compneurobilbao-1.0.3-py3-none-any.whl
Algorithm Hash digest
SHA256 44330a3355e9e252552b838a139c89282394b3a995069fa15e97a544e23c08df
MD5 3bb2f3bf01beb9746a6616194e58ffa4
BLAKE2b-256 050befa182a6e1cfb82ed0e1b565df961a1b5e3571fa3d4726948d666ea28187

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page