Locomotion HRL envs in pybullet
Project description
Hierarchical Reinforcement envs in pybullet
This package was created because all of the HRL locomotion envs are only available in mujoco. This is an implementation of as many as possible in pybullet.
Install
pip install pybullet hrl_pybullet_envs
This project requires pybullet-gym which must be installed along side this package.
Envs:
- AntGatherBulletEnv-v0
- AntMazeBulletEnv-v0
- AntMjBulletEnv-0
- AntFlagrunBulletEnv-v0
- PointGatherBulletEnv-v0
Example
Also see this notebook
import hrl_pybullet_envs
import gym
import numpy as np
env = gym.make('AntGatherBulletEnv-v0')
env.render()
ob = env.reset()
tot_rew = 0
for i in range(1000):
# Take random actions
ob, rew, done, _ = env.step(np.random.uniform(-1, 1, env.action_space.shape))
tot_rew += rew
if done: break
print(f'Achieved total reward of: {tot_rew}')
Project details
Release history Release notifications | RSS feed
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
hrl_pybullet_envs-0.2.37.tar.gz
(30.7 kB
view details)
Built Distribution
File details
Details for the file hrl_pybullet_envs-0.2.37.tar.gz
.
File metadata
- Download URL: hrl_pybullet_envs-0.2.37.tar.gz
- Upload date:
- Size: 30.7 kB
- Tags: Source
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/3.4.2 importlib_metadata/4.6.3 pkginfo/1.5.0.1 requests/2.23.0 requests-toolbelt/0.9.1 tqdm/4.62.0 CPython/3.8.2
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 7935e6a911b58fd1ee228b2282dd6b9e6ad8380a9beaaafee1c93a5c71768138 |
|
MD5 | 627f751e08e8467b2641bff8130f4610 |
|
BLAKE2b-256 | 4df3626d039f4e3e48f37e8215fb17976364a103b9a27ad0c3c1b1c841364d85 |
File details
Details for the file hrl_pybullet_envs-0.2.37-py3-none-any.whl
.
File metadata
- Download URL: hrl_pybullet_envs-0.2.37-py3-none-any.whl
- Upload date:
- Size: 41.8 kB
- Tags: Python 3
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/3.4.2 importlib_metadata/4.6.3 pkginfo/1.5.0.1 requests/2.23.0 requests-toolbelt/0.9.1 tqdm/4.62.0 CPython/3.8.2
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 1edf942113d1046b8fe66224d10a8c474bbf4767dd5e56c61d7ea039aba482ec |
|
MD5 | 959eb9c15109fe233245989d7fd623f0 |
|
BLAKE2b-256 | ea41bb2d4c71e02b308e98d02d12e392d99228635fa67a7906f1dbc45049574d |