Hyperspectral Image Restoration Toolbox
Project description
HSIR
Out-of-box Hyperspectral Image Restoration Toolbox
Denoising for remotely sensed images from QRNN3D
Install
pip install hsir
Usage
Here are some runable examples, please refer to the code for more options.
python hsirun/train.py -a qrnn3d.qrnn3d
python hsirun/test.py -a qrnn3d.qrnn3d -r qrnn3d.pth -t icvl_512_50
Benchmark
Pretrained Models | Training Log | Datasets
Baidu Drive's Share Code=HSIR
Supported Models
Denoising | Super Resolution | Spectral Compressive Imaging | Spectral Reconstruction |
Gaussian Denoising on ICVL
Sigma=30 | Sigma=50 | Sigma=70 | Sigma=Blind | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Params(M) | Runtime(s) | FLOPs | PSNR | SSIM | SAM | PSNR | SSIM | SAM | PSNR | SSIM | SAM | PSNR | SSIM | SAM | |
Noisy | 18.59 | 0.110 | .0807 | 14.15 | 0.046 | 0.991 | 11.23 | 0.025 | 1.105 | 17.34 | 0.114 | 0.859 | |||
BM4D | 154 | 38.45 | 0.934 | 0.126 | 35.60 | 0.889 | 0.169 | 33.70 | 0.845 | 0.207 | 37.66 | 0.914 | 0.143 | ||
TDL | 18 | 40.58 | 0.957 | 0.062 | 38.01 | 0.932 | 0.085 | 36.36 | 0.909 | 0.105 | 39.91 | 0.946 | 0.072 | ||
ITSReg | 907 | 41.48 | 0.961 | 0.088 | 38.88 | 0.941 | 0.098 | 36.71 | 0.923 | 0.112 | 40.62 | 0.953 | 0.087 | ||
LLRT | 627 | 41.99 | 0.967 | 0.056 | 38.99 | 0.945 | 0.075 | 37.36 | 0.930 | 0.087 | 40.97 | 0.956 | 0.064 | ||
KBR | 1755 | 41.48 | 0.984 | 0.088 | 39.16 | 0.974 | 0.100 | 36.71 | 0.961 | 0.113 | 40.68 | 0.979 | 0.080 | ||
WLRTR | 1600 | 42.62 | 0.988 | 0.056 | 39.72 | 0.978 | 0.073 | 37.52 | 0.967 | 0.095 | 41.66 | 0.983 | 0.064 | ||
NGmeet | 166 | 42.99 | 0.989 | 0.050 | 40.26 | 0.980 | 0.059 | 38.66 | 0.974 | 0.067 | 42.23 | 0.985 | 0.053 | ||
HSID | 0.40 | 3 | 38.70 | 0.949 | 0.103 | 36.17 | 0.919 | 0.134 | 34.31 | 0.886 | 0.161 | 37.80 | 0.935 | 0.116 | |
QRNN3D | 0.86 | 0.73 | 42.22 | 0.988 | 0.062 | 40.15 | 0.982 | 0.074 | 38.30 | 0.974 | 0.094 | 41.37 | 0.985 | 0.068 | |
TS3C | 0.83 | 0.95 | 42.36 | 0.986 | 0.079 | 40.47 | 0.980 | 0.087 | 39.05 | 0.974 | 0.096 | 41.52 | 0.983 | 0.085 | |
GRUNet | 14.2 | 0.87 | 42.84 | 0.989 | 0.052 | 40.75 | 0.983 | 0.062 | 39.02 | 0.977 | 0.080 | 42.03 | 0.987 | 0.057 |
Complex Denoising on ICVL
non-iid | g+stripe | g+deadline | g+impulse | mixture | ||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Params(M) | Runtime(s) | FLOPs | PSNR | SSIM | SAM | PSNR | SSIM | SAM | PSNR | SSIM | SAM | PSNR | SSIM | SAM | PSNR | SSIM | SAM | |
Noisy | 18.25 | 0.168 | 0.898 | 17.80 | 0.159 | 0.910 | 17.61 | 0.155 | 0.917 | 14.80 | 0.114 | 0.926 | 14.08 | 0.099 | 0.944 | |||
LRMR | 32.80 | 0.719 | 0.185 | 32.62 | 0.717 | 0.187 | 31.83 | 0.709 | 0.227 | 29.70 | 0.623 | 0.311 | 28.68 | 0.608 | 0.353 | |||
LRTV | 33.62 | 0.905 | 0.077 | 33.49 | 0.905 | 0.078 | 32.37 | 0.895 | 0.115 | 31.56 | 0.871 | 0.242 | 30.47 | 0.858 | 0.287 | |||
NMoG | 34.51 | 0.812 | 0.187 | 33.87 | 0.799 | 0.265 | 32.87 | 0.797 | 0.276 | 28.60 | 0.652 | 0.486 | 27.31 | 0.632 | 0.513 | |||
TDTV | 38.14 | 0.944 | 0.075 | 37.67 | 0.940 | 0.081 | 36.15 | 0.930 | 0.099 | 36.67 | 0.935 | 0.094 | 34.77 | 0.919 | 0.113 | |||
HSID | 0.40 | 3 | 38.40 | 0.947 | 0.095 | 37.77 | 0.942 | 0.104 | 37.65 | 0.940 | 0.102 | 35.00 | 0.899 | 0.174 | 34.05 | 0.888 | 0.181 | |
TS3C | 0.83 | 0.95 | 41.12 | 0.986 | 0.069 | 40.66 | 0.985 | 0.077 | 39.38 | 0.982 | 0.100 | 35.92 | 0.951 | 0.205 | 34.36 | 0.945 | 0.230 | |
QRNN3D | 0.86 | 0.73 | 42.79 | 0.978 | 0.052 | 42.35 | 0.976 | 0.055 | 42.23 | 0.976 | 0.056 | 39.23 | 0.945 | 0.109 | 38.25 | 0.938 | 0.107 | |
GRUNet | 14.2 | 0.87 | 42.89 | 0.992 | 0.047 | 42.39 | 0.991 | 0.050 | 42.11 | 0.991 | 0.050 | 40.70 | 0.985 | 0.067 | 38.51 | 0.981 | 0.081 |
Acknowledgement
Citation
If you find this repo helpful, please considering citing us.
@article{LAI2022281,
title = {Deep plug-and-play prior for hyperspectral image restoration},
journal = {Neurocomputing},
volume = {481},
pages = {281-293},
year = {2022},
issn = {0925-2312},
doi = {https://doi.org/10.1016/j.neucom.2022.01.057},
author = {Zeqiang Lai and Kaixuan Wei and Ying Fu},
}
Project details
Release history Release notifications | RSS feed
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
hsir-0.1.1.tar.gz
(94.0 kB
view details)
Built Distribution
hsir-0.1.1-py3-none-any.whl
(122.4 kB
view details)
File details
Details for the file hsir-0.1.1.tar.gz
.
File metadata
- Download URL: hsir-0.1.1.tar.gz
- Upload date:
- Size: 94.0 kB
- Tags: Source
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/4.0.0 CPython/3.7.12
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 71e467b25a74b5df14b593ce27163a91a5e79b682b74cfc543e1f38e4db9132f |
|
MD5 | 3a418d21bc018924fc33adcd51500b92 |
|
BLAKE2b-256 | ee0638c295a5a3388738595315f32bd12825d5354bc6931c4c7c572636449f3c |
File details
Details for the file hsir-0.1.1-py3-none-any.whl
.
File metadata
- Download URL: hsir-0.1.1-py3-none-any.whl
- Upload date:
- Size: 122.4 kB
- Tags: Python 3
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/4.0.0 CPython/3.7.12
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 1cb4df3892d5e504a7295f06cf32eac60a63fe6790c852a82358878b83c7aeba |
|
MD5 | de74e718bc03cf6e5711dfdabca01d73 |
|
BLAKE2b-256 | 84c068fbfbed1bf0aa952cde2d40c18c3d4639c6d66dcc7517a50192b487682e |