Computing Hermite normal form and Smith normal form.
Project description
hsnf
Computing Hermite normal form and Smith normal form with transformation matrices.
- Github: https://github.com/lan496/hsnf
- PyPI: https://pypi.org/project/hsnf/
Usage
import numpy as np
from hsnf import column_style_hermite_normal_form, row_style_hermite_normal_form, smith_normal_form
# Integer matrix to be decomposed
M = np.array(
[
[-6, 111, -36, 6],
[5, -672, 210, 74],
[0, -255, 81, 24],
]
)
# Smith normal form
D, L, R = smith_normal_form(M)
"""
D = array([
[ 1 0 0 0]
[ 0 3 0 0]
[ 0 0 2079 0]])
"""
assert np.allclose(L @ M @ R, D)
assert np.around(np.abs(np.linalg.det(L))) == 1 # unimodular
assert np.around(np.abs(np.linalg.det(R))) == 1 # unimodular
# Row-style hermite normal form
H, L = row_style_hermite_normal_form(M)
"""
H = array([
[ 1 0 420 -2522]
[ 0 3 1809 -10860]
[ 0 0 2079 -12474]])
"""
assert np.allclose(L @ M, H)
assert np.around(np.abs(np.linalg.det(L))) == 1 # unimodular
# Column-style hermite normal form
H, R = column_style_hermite_normal_form(M)
"""
H = array([
[ 3 0 0 0]
[ 0 1 0 0]
[1185 474 2079 0]])
"""
assert np.allclose(np.dot(M, R), H)
assert np.around(np.abs(np.linalg.det(R))) == 1 # unimodular
Installation
hsnf works with Python3.8+ and can be installed via PyPI:
pip install hsnf
or in local:
git clone git@github.com:lan496/hsnf.git
cd hsnf
pip install .
References
- http://www.dlfer.xyz/post/2016-10-27-smith-normal-form/
- I appreciate Dr. D. L. Ferrario's instructive blog post and his approval for referring his scripts.
- CSE206A: Lattices Algorithms and Applications (Spring 2014)
Project details
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
hsnf-0.3.8.tar.gz
(17.7 kB
view details)
Built Distribution
hsnf-0.3.8-py3-none-any.whl
(9.1 kB
view details)
File details
Details for the file hsnf-0.3.8.tar.gz
.
File metadata
- Download URL: hsnf-0.3.8.tar.gz
- Upload date:
- Size: 17.7 kB
- Tags: Source
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/4.0.0 CPython/3.10.4
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 1f7c4de298aba3141d8dc5cd338b6319a59301a791832183e83e512a76547f3c |
|
MD5 | 472a825300013ccc35e53ab72336a8d7 |
|
BLAKE2b-256 | f98c3067a53bbf455be8ccf49350e3fdddc3305ee0a52a5f1b2b5ad753e92f76 |
File details
Details for the file hsnf-0.3.8-py3-none-any.whl
.
File metadata
- Download URL: hsnf-0.3.8-py3-none-any.whl
- Upload date:
- Size: 9.1 kB
- Tags: Python 3
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/4.0.0 CPython/3.10.4
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 0f14750f309f50167aff73a5019f0221db3e2699dca85cd668e9f6ffe5ef7ae9 |
|
MD5 | 4c989b598c2e9222c78b30322dce9d77 |
|
BLAKE2b-256 | c649ed94f2964673db26fb02609ad22d3af59804de70341d9a661ab08cad8dac |