Skip to main content

hstrat enables phylogenetic inference on distributed digital evolution populations

Project description

hstrat wordmark

PyPi codecov Codacy Badge CI Read The Docs GitHub stars Zenodo JOSS

hstrat enables phylogenetic inference on distributed digital evolution populations

Install

python3 -m pip install hstrat

A containerized release of hstrat is available via ghcr.io

singularity exec docker://ghcr.io/mmore500/hstrat:v1.20.24 python3 -m hstrat --help

Features

hstrat serves to enable robust, efficient extraction of evolutionary history from evolutionary simulations where centralized, direct phylogenetic tracking is not feasible. Namely, in large-scale, decentralized parallel/distributed evolutionary simulations, where agents' evolutionary lineages migrate among many cooperating processors over the course of simulation.

hstrat can

  • accurately estimate time since MRCA among two or several digital agents, even for uneven branch lengths
  • reconstruct phylogenetic trees for entire populations of evolving digital agents
  • serialize genome annotations to/from text and binary formats
  • provide low-footprint genome annotations (e.g., reasonably as low as 64 bits each)
  • be directly configured to satisfy memory use limits and/or inference accuracy requirements

hstrat operates just as well in single-processor simulation, but direct phylogenetic tracking using a tool like phylotrackpy should usually be preferred in such cases due to its capability for perfect record-keeping given centralized global simulation observability.

Example Usage

This code briefly demonstrates,

  1. initialization of a population of HereditaryStratigraphicColumn of objects,
  2. generation-to-generation transmission of HereditaryStratigraphicColumn objects with simple synchronous turnover, and then
  3. reconstruction of phylogenetic history from the final population of HereditaryStratigraphicColumn objects.
from random import choice as rchoice
import alifedata_phyloinformatics_convert as apc
from hstrat import hstrat; print(f"{hstrat.__version__=}")  # when last ran?
from hstrat._auxiliary_lib import seed_random; seed_random(1)  # reproducibility

# initialize a small population of hstrat instrumentation
# (in full simulations, each column would be attached to an individual genome)
population = [hstrat.HereditaryStratigraphicColumn() for __ in range(5)]

# evolve population for 40 generations under drift
for _generation in range(40):
    population = [rchoice(population).CloneDescendant() for __ in population]

# reconstruct estimate of phylogenetic history
alifestd_df = hstrat.build_tree(population, version_pin=hstrat.__version__)
tree_ascii = apc.RosettaTree(alifestd_df).as_dendropy.as_ascii_plot(width=20)
print(tree_ascii)
hstrat.__version__='1.8.8'
              /--- 1
          /---+
       /--+   \--- 3
       |  |
   /---+  \------- 2
   |   |
+--+   \---------- 0
   |
   \-------------- 4

In actual usage, each hstrat column would be bundled with underlying genetic material of interest in the simulation --- entire genomes or, in systems with sexual recombination, individual genes. The hstrat columns are designed to operate as a neutral genetic annotation, enhancing observability of the simulation but not affecting its outcome.

How it Works

In order to enable phylogenetic inference over fully-distributed evolutionary simulation, hereditary stratigraphy adopts a paradigm akin to phylogenetic work in natural history/biology. In these fields, phylogenetic history is inferred through comparisons among genetic material of extant organisms, with --- in broad terms --- phylogenetic relatedness established through the extent of genetic similarity between organisms. Phylogenetic tracking through hstrat, similarly, is achieved through analysis of similarity/dissimilarity among genetic material sampled over populations of interest.

Rather than random mutation as with natural genetic material, however, genetic material used by hstrat is structured through hereditary stratigraphy. This methodology, described fully in our documentation, provides strong guarantees on phylogenetic inferential power, minimizes memory footprint, and allows efficient reconstruction procedures.

See here for more detail on underlying hereditary stratigraphy methodology.

Getting Started

Refer to our documentation for a quickstart guide and an annotated end-to-end usage example.

The examples/ folder provides extensive usage examples, including

  • incorporation of hstrat annotations into a custom genome class,
  • automatic stratum retention policy parameterization,
  • pairwise and population-level phylogenetic inference, and
  • phylogenetic tree reconstruction.

Interested users can find an explanation of how hereditary stratigraphy methodology implemented by hstrat works "under the hood," information on project-specific hstrat configuration, and full API listing for the hstrat package in the documentation.

Citing

If hstrat software or hereditary stratigraphy methodology contributes to a scholarly work, please cite it according to references provided here. We would love to list your project using hstrat in our documentation, see more here.

Credits

This package was created with Cookiecutter and the audreyr/cookiecutter-pypackage project template.

hcat

hcat

Project details


Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

hstrat-1.20.24.tar.gz (1.0 MB view details)

Uploaded Source

Built Distributions

If you're not sure about the file name format, learn more about wheel file names.

hstrat-1.20.24-pp310-pypy310_pp73-win_amd64.whl (837.6 kB view details)

Uploaded PyPyWindows x86-64

hstrat-1.20.24-pp310-pypy310_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (890.5 kB view details)

Uploaded PyPymanylinux: glibc 2.17+ x86-64

hstrat-1.20.24-pp310-pypy310_pp73-manylinux_2_17_i686.manylinux2014_i686.whl (901.4 kB view details)

Uploaded PyPymanylinux: glibc 2.17+ i686

hstrat-1.20.24-pp310-pypy310_pp73-macosx_11_0_arm64.whl (850.6 kB view details)

Uploaded PyPymacOS 11.0+ ARM64

hstrat-1.20.24-cp313-cp313-win_amd64.whl (840.2 kB view details)

Uploaded CPython 3.13Windows x86-64

hstrat-1.20.24-cp313-cp313-musllinux_1_2_x86_64.whl (1.9 MB view details)

Uploaded CPython 3.13musllinux: musl 1.2+ x86-64

hstrat-1.20.24-cp313-cp313-musllinux_1_2_i686.whl (2.0 MB view details)

Uploaded CPython 3.13musllinux: musl 1.2+ i686

hstrat-1.20.24-cp313-cp313-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (888.9 kB view details)

Uploaded CPython 3.13manylinux: glibc 2.17+ x86-64

hstrat-1.20.24-cp313-cp313-manylinux_2_17_i686.manylinux2014_i686.whl (901.0 kB view details)

Uploaded CPython 3.13manylinux: glibc 2.17+ i686

hstrat-1.20.24-cp313-cp313-macosx_11_0_arm64.whl (854.6 kB view details)

Uploaded CPython 3.13macOS 11.0+ ARM64

hstrat-1.20.24-cp312-cp312-win_amd64.whl (840.2 kB view details)

Uploaded CPython 3.12Windows x86-64

hstrat-1.20.24-cp312-cp312-musllinux_1_2_x86_64.whl (1.9 MB view details)

Uploaded CPython 3.12musllinux: musl 1.2+ x86-64

hstrat-1.20.24-cp312-cp312-musllinux_1_2_i686.whl (2.0 MB view details)

Uploaded CPython 3.12musllinux: musl 1.2+ i686

hstrat-1.20.24-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (888.8 kB view details)

Uploaded CPython 3.12manylinux: glibc 2.17+ x86-64

hstrat-1.20.24-cp312-cp312-manylinux_2_17_i686.manylinux2014_i686.whl (901.2 kB view details)

Uploaded CPython 3.12manylinux: glibc 2.17+ i686

hstrat-1.20.24-cp312-cp312-macosx_11_0_arm64.whl (854.6 kB view details)

Uploaded CPython 3.12macOS 11.0+ ARM64

hstrat-1.20.24-cp311-cp311-win_amd64.whl (838.8 kB view details)

Uploaded CPython 3.11Windows x86-64

hstrat-1.20.24-cp311-cp311-musllinux_1_2_x86_64.whl (1.9 MB view details)

Uploaded CPython 3.11musllinux: musl 1.2+ x86-64

hstrat-1.20.24-cp311-cp311-musllinux_1_2_i686.whl (2.0 MB view details)

Uploaded CPython 3.11musllinux: musl 1.2+ i686

hstrat-1.20.24-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (889.6 kB view details)

Uploaded CPython 3.11manylinux: glibc 2.17+ x86-64

hstrat-1.20.24-cp311-cp311-manylinux_2_17_i686.manylinux2014_i686.whl (901.7 kB view details)

Uploaded CPython 3.11manylinux: glibc 2.17+ i686

hstrat-1.20.24-cp311-cp311-macosx_11_0_arm64.whl (853.8 kB view details)

Uploaded CPython 3.11macOS 11.0+ ARM64

hstrat-1.20.24-cp310-cp310-win_amd64.whl (838.0 kB view details)

Uploaded CPython 3.10Windows x86-64

hstrat-1.20.24-cp310-cp310-musllinux_1_2_x86_64.whl (1.9 MB view details)

Uploaded CPython 3.10musllinux: musl 1.2+ x86-64

hstrat-1.20.24-cp310-cp310-musllinux_1_2_i686.whl (2.0 MB view details)

Uploaded CPython 3.10musllinux: musl 1.2+ i686

hstrat-1.20.24-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (888.4 kB view details)

Uploaded CPython 3.10manylinux: glibc 2.17+ x86-64

hstrat-1.20.24-cp310-cp310-manylinux_2_17_i686.manylinux2014_i686.whl (900.8 kB view details)

Uploaded CPython 3.10manylinux: glibc 2.17+ i686

hstrat-1.20.24-cp310-cp310-macosx_11_0_arm64.whl (852.4 kB view details)

Uploaded CPython 3.10macOS 11.0+ ARM64

File details

Details for the file hstrat-1.20.24.tar.gz.

File metadata

  • Download URL: hstrat-1.20.24.tar.gz
  • Upload date:
  • Size: 1.0 MB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/6.1.0 CPython/3.13.7

File hashes

Hashes for hstrat-1.20.24.tar.gz
Algorithm Hash digest
SHA256 089dfafa894a270c34ca9520b5ff2a90a5137d913800832dfb86c4c9a8124a5e
MD5 564e1282465c07996a47f3239f69d2ca
BLAKE2b-256 654f2c27e92177508fda4087cebc115aeee220283401cf0e41cc9d525e7b7184

See more details on using hashes here.

File details

Details for the file hstrat-1.20.24-pp310-pypy310_pp73-win_amd64.whl.

File metadata

File hashes

Hashes for hstrat-1.20.24-pp310-pypy310_pp73-win_amd64.whl
Algorithm Hash digest
SHA256 b2bdfc74cc73cbf3f241b3fcac844c3929f245ebe07c2e4f251992b4d0d8e270
MD5 a81fac820462ebf597e4364a2c720de3
BLAKE2b-256 870d3fcba8934a1380cba48c3329df6d5050efef667ad67420d913ba80569da9

See more details on using hashes here.

File details

Details for the file hstrat-1.20.24-pp310-pypy310_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for hstrat-1.20.24-pp310-pypy310_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 de6a45744812e4dcf40afc0477081340a27b70eb4cad328090f3270818be23fe
MD5 b4e79a9d73246bf243dda2acab880e87
BLAKE2b-256 e25e2a27a55e3b265a2743e2ca109541155bd2b89aae92044f0d7184c9e995a9

See more details on using hashes here.

File details

Details for the file hstrat-1.20.24-pp310-pypy310_pp73-manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for hstrat-1.20.24-pp310-pypy310_pp73-manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 2533738e85a8b6ed68d5a583ffa45bdfeee718603b30352d6eb3d0aa5e5d6f4a
MD5 fcef79597489a3e6a468bb0e53aa4ca6
BLAKE2b-256 5de75a2a274e12cba1ca9f5de610e3feec00a8f609806e5300cbf47c29bf4272

See more details on using hashes here.

File details

Details for the file hstrat-1.20.24-pp310-pypy310_pp73-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for hstrat-1.20.24-pp310-pypy310_pp73-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 5d45ee0b06f3ee3639cc4b08184305048e68d93e4c2bcbaded25356d0dac3076
MD5 bab6081b05104d83eebef873d8e4a6ad
BLAKE2b-256 9b9d44295a1c8271e348385f25fd287ab95ab7fbb7d3d448f46a35d520ab7fee

See more details on using hashes here.

File details

Details for the file hstrat-1.20.24-cp313-cp313-win_amd64.whl.

File metadata

  • Download URL: hstrat-1.20.24-cp313-cp313-win_amd64.whl
  • Upload date:
  • Size: 840.2 kB
  • Tags: CPython 3.13, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/6.1.0 CPython/3.13.7

File hashes

Hashes for hstrat-1.20.24-cp313-cp313-win_amd64.whl
Algorithm Hash digest
SHA256 a948aa0ce9251d958731fe1943d5996fd616b0dc9203e2d0f722f01d41983eb6
MD5 3e480c82c29480fefbe4472ed899d3f8
BLAKE2b-256 eec3b3f55499c6990413fbccafb9adea36274711d70eb1702ba42be7cdb02ee6

See more details on using hashes here.

File details

Details for the file hstrat-1.20.24-cp313-cp313-musllinux_1_2_x86_64.whl.

File metadata

File hashes

Hashes for hstrat-1.20.24-cp313-cp313-musllinux_1_2_x86_64.whl
Algorithm Hash digest
SHA256 ffa81bf5069d59cd3256135f6072057db1ac42c2d413303fa3b7028d51864c4d
MD5 81afd18318dae198944e3b03aa7a8a77
BLAKE2b-256 c573cc437831b8fc4d702f5386184a8eaaab3ea0856e1ca3e0b8abf1202214c6

See more details on using hashes here.

File details

Details for the file hstrat-1.20.24-cp313-cp313-musllinux_1_2_i686.whl.

File metadata

File hashes

Hashes for hstrat-1.20.24-cp313-cp313-musllinux_1_2_i686.whl
Algorithm Hash digest
SHA256 1becee059e1b6cdfec94904c1be84100d4e98f8e2dc3d7348f15f7201001cd28
MD5 9292288e13ddbd59ec1fbb45d065fc37
BLAKE2b-256 2c572cd09e861c4fe23fee4f22fe4c09375e8a86807e0abaec642d7b06d7900a

See more details on using hashes here.

File details

Details for the file hstrat-1.20.24-cp313-cp313-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for hstrat-1.20.24-cp313-cp313-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 ff13b49dc68e123a21a9fb0b36321aafbd4ebb57f457c21b009492d4a52c8054
MD5 b277ebea397040aafbe2956c77056b65
BLAKE2b-256 ff1e83d66a8312de1c94081dc34723590b7898aa824c37963c70bc4bc512ecc2

See more details on using hashes here.

File details

Details for the file hstrat-1.20.24-cp313-cp313-manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for hstrat-1.20.24-cp313-cp313-manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 011114719c109d488a9788136e045b09940ad41da076e5fb8dfb3ea04bd3c11a
MD5 99621cd436a1a58980270ca2e8608af5
BLAKE2b-256 7c677e57d581cc3abb2b6704dd5d17dc329541bcd52d6fcbd992ff91288d9ad7

See more details on using hashes here.

File details

Details for the file hstrat-1.20.24-cp313-cp313-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for hstrat-1.20.24-cp313-cp313-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 b453a8ba73c6bb9bbb2637fbad29ab511cf0cbf2771f08a9fbcfdb58b180be1e
MD5 963ea729a2447e042cfc7d414d7f8018
BLAKE2b-256 e580bd6204e9fcc4784db1b011d92ed93c3fbb668c567e80a6f668c8751b0dc0

See more details on using hashes here.

File details

Details for the file hstrat-1.20.24-cp312-cp312-win_amd64.whl.

File metadata

  • Download URL: hstrat-1.20.24-cp312-cp312-win_amd64.whl
  • Upload date:
  • Size: 840.2 kB
  • Tags: CPython 3.12, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/6.1.0 CPython/3.13.7

File hashes

Hashes for hstrat-1.20.24-cp312-cp312-win_amd64.whl
Algorithm Hash digest
SHA256 1e9755160f28385d9d6b30ad70f18810d574d74179262ad13b38c33846ccdc01
MD5 16ac7427140f814e4799eb91b974f312
BLAKE2b-256 5d00bbe279e1d250abb58363b89a9e9bc7f5f4496d47def8fa9675fe79debeed

See more details on using hashes here.

File details

Details for the file hstrat-1.20.24-cp312-cp312-musllinux_1_2_x86_64.whl.

File metadata

File hashes

Hashes for hstrat-1.20.24-cp312-cp312-musllinux_1_2_x86_64.whl
Algorithm Hash digest
SHA256 0d6891926408fd7965ca11418dc78661598d7d786c0059b4b6353115ab36ee9e
MD5 ffcbe7b474626765059d9dd695500d26
BLAKE2b-256 21a9fd2d3650ab0c63f627f897caf9833e60a282f2dce21a64d664f180e237a6

See more details on using hashes here.

File details

Details for the file hstrat-1.20.24-cp312-cp312-musllinux_1_2_i686.whl.

File metadata

File hashes

Hashes for hstrat-1.20.24-cp312-cp312-musllinux_1_2_i686.whl
Algorithm Hash digest
SHA256 83b4b931c6e22430b27600b166c5402a2b889ac8d912decd82e2644533d0e80e
MD5 c1483324f3f919ca02722ac86324007b
BLAKE2b-256 e40dfb4b5a22f749f2c06ed02cc21f9366ff03ad948efac56b6de716a403fe44

See more details on using hashes here.

File details

Details for the file hstrat-1.20.24-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for hstrat-1.20.24-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 1e50d817eac1035a637b31a9ac584dc08f74486d950fbb0aa0f287cd5fc630d0
MD5 a21ce3dc946719d3a72b0e328d287ae1
BLAKE2b-256 0e38a76447fa9c1a975fab6208c2d23fcf18bd96dc5a04bfc477c52c54d146ef

See more details on using hashes here.

File details

Details for the file hstrat-1.20.24-cp312-cp312-manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for hstrat-1.20.24-cp312-cp312-manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 7c3064b7ea93b5ee38267285a4c23b087bc7f6919197256d18dcb67ae3811fc0
MD5 88deaf3608c55d2639780ccc4d437529
BLAKE2b-256 214afa2443df175475070f418cace5cba60b58f93e35d0fccfee0657a6b64761

See more details on using hashes here.

File details

Details for the file hstrat-1.20.24-cp312-cp312-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for hstrat-1.20.24-cp312-cp312-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 e3fd0990b8698c7bd5848cd68fdb2e9f79773fedb318bfbc6f336ff0773d9dbb
MD5 8fdad6d1a58bd30f43e90cc892b2cfbd
BLAKE2b-256 e06a23c07895827be17da51a29ec8e2a23ec2023229d553b190423c05be0f353

See more details on using hashes here.

File details

Details for the file hstrat-1.20.24-cp311-cp311-win_amd64.whl.

File metadata

  • Download URL: hstrat-1.20.24-cp311-cp311-win_amd64.whl
  • Upload date:
  • Size: 838.8 kB
  • Tags: CPython 3.11, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/6.1.0 CPython/3.13.7

File hashes

Hashes for hstrat-1.20.24-cp311-cp311-win_amd64.whl
Algorithm Hash digest
SHA256 b96fb09c0f81f20783919e6fe6e9eb07c6ae35471b05bdaed9f4a64342ec2c79
MD5 d05803928894a468150bac76d685f290
BLAKE2b-256 bda530286eb3e567840219f8a088a26ce2f6a93312e42f4153cb46ac0eb5c1ea

See more details on using hashes here.

File details

Details for the file hstrat-1.20.24-cp311-cp311-musllinux_1_2_x86_64.whl.

File metadata

File hashes

Hashes for hstrat-1.20.24-cp311-cp311-musllinux_1_2_x86_64.whl
Algorithm Hash digest
SHA256 9793e76f6a965b6e69c4a179605a688efd21043f79d76a6f4c8faa791365b19f
MD5 c1d73dcf4300215f54c737676adee274
BLAKE2b-256 fd56481b313a107f3dd37883fc565338f1e07e49abcd5623abab531a2f1b1f81

See more details on using hashes here.

File details

Details for the file hstrat-1.20.24-cp311-cp311-musllinux_1_2_i686.whl.

File metadata

File hashes

Hashes for hstrat-1.20.24-cp311-cp311-musllinux_1_2_i686.whl
Algorithm Hash digest
SHA256 4af14e1cb1eb5611a067d3f674f37b9fac533f919d3282b97a83fa04cff35181
MD5 254f1eb287adae3125c1597b59d2a1e1
BLAKE2b-256 feffc05e36b73870835e34062f00cc82da190f7f45568aea5d72e1ef3c2838be

See more details on using hashes here.

File details

Details for the file hstrat-1.20.24-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for hstrat-1.20.24-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 f4d0a16f8606ea47b3457d7c9f33983a05ecbcdfd2ab0b515df0bb74257abe64
MD5 78a4a952eaef5d2e4bbafb62dce7b125
BLAKE2b-256 38a888f48e164336ff1cff8a249d1972800677986377e1298f90506c7632a722

See more details on using hashes here.

File details

Details for the file hstrat-1.20.24-cp311-cp311-manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for hstrat-1.20.24-cp311-cp311-manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 43104177eff48576630e25f4e5decc59151638a0ca1358e719821bac5944b7cd
MD5 2ee405fde6b88eff1ce1b46594b77605
BLAKE2b-256 c8ef46ecb35228be38936725eaf72c4da32260bb1567887649819001b915e287

See more details on using hashes here.

File details

Details for the file hstrat-1.20.24-cp311-cp311-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for hstrat-1.20.24-cp311-cp311-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 ff28b1f8c04302545f8b81464b56319ddcd9058a73d8e51079d3399b4f7a21ff
MD5 17e82a023326a65428b6dd3ccac472eb
BLAKE2b-256 e61f263dda6db9f574e2a1cc4d4d647cf25b03c8abd8b2154caa296bf0d363d9

See more details on using hashes here.

File details

Details for the file hstrat-1.20.24-cp310-cp310-win_amd64.whl.

File metadata

  • Download URL: hstrat-1.20.24-cp310-cp310-win_amd64.whl
  • Upload date:
  • Size: 838.0 kB
  • Tags: CPython 3.10, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/6.1.0 CPython/3.13.7

File hashes

Hashes for hstrat-1.20.24-cp310-cp310-win_amd64.whl
Algorithm Hash digest
SHA256 2e099b87048344fd0cc63a01dcbdc4e7c2785d69b555e5064b6ddbfa16a8e9b6
MD5 4d0ebdc4470a56f4151da5da78203425
BLAKE2b-256 760341c232d009109406d1a119f42a799ba393f70466015f823004698d17dd14

See more details on using hashes here.

File details

Details for the file hstrat-1.20.24-cp310-cp310-musllinux_1_2_x86_64.whl.

File metadata

File hashes

Hashes for hstrat-1.20.24-cp310-cp310-musllinux_1_2_x86_64.whl
Algorithm Hash digest
SHA256 bf6e88cbb6128b4248f97e251cd1c6617f2ffc5acd1f58ba5b1abd6e904bd014
MD5 b4eba38ff0291d35270a7ab6d150ffb3
BLAKE2b-256 58cbc8ff326ac1c73a1327c71235354ec36584dccbc2aa5419210404b5e6857a

See more details on using hashes here.

File details

Details for the file hstrat-1.20.24-cp310-cp310-musllinux_1_2_i686.whl.

File metadata

File hashes

Hashes for hstrat-1.20.24-cp310-cp310-musllinux_1_2_i686.whl
Algorithm Hash digest
SHA256 74c74c1691fec2d74a7bc8d80f34e3f46a74bb32d2aea84843d69a35ab1e3b0b
MD5 270783af40244ca281436d0f3f107f9c
BLAKE2b-256 54cd7faefcea89bcbf45d745f09380204afd602facf873293d780ab5eeceecb1

See more details on using hashes here.

File details

Details for the file hstrat-1.20.24-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for hstrat-1.20.24-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 977428c465b453f30bb7de1f6762d949785c4bc73228afe657e52b4173117cab
MD5 308031a6a499f390b644beb2bf96225d
BLAKE2b-256 57f5b1f391927415d508a7f20117f5cf09797e2708f2b5094f4d612f61fec715

See more details on using hashes here.

File details

Details for the file hstrat-1.20.24-cp310-cp310-manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for hstrat-1.20.24-cp310-cp310-manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 cf23494f28e361259b4bbf27b4cb2ac40ad326d2eb109c8b467f961bcc883541
MD5 9fbeace163e556a92d4fed6f5e948e9a
BLAKE2b-256 6ebd15febbbbf6f92f28786a94029a5ea420d361baefc12409c7bd6c52bba7f6

See more details on using hashes here.

File details

Details for the file hstrat-1.20.24-cp310-cp310-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for hstrat-1.20.24-cp310-cp310-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 9d24d1a4a8ae10ec2186a529d0377f5e304a3146b2a641f9b5fecf0f885f0b52
MD5 6ac84d6577194c7facb81bf7ff869ea0
BLAKE2b-256 b3a72ddbd8f227a2b79ba29c85dcc13423d1024d0dbf4772bd348a4307ceb3b1

See more details on using hashes here.

Supported by

AWS Cloud computing and Security Sponsor Datadog Monitoring Depot Continuous Integration Fastly CDN Google Download Analytics Pingdom Monitoring Sentry Error logging StatusPage Status page