Skip to main content

Extracting content from spesific address books

Project description

historical-text-extraction (hte)

PyPI version

Package to extract text from historical documents. The package is written for personal use.

Installation

The current release from the PyPI repository:

pip install hte

The development version from GitHub with:

pip install git+ssh://git@github.com/eirikberger/hte.git

Note that it is nessecary with a SSH key for this approach to work.

Using it

Import the package.

from hte import digitize

The basic setup is the following:

# Define class
book = digitize.Book("data/finnmark_1968.pdf", "books")

# Run methods on the class
book.CreateFolderStructure()
book.PdfImport(page_info=False, from_page=21, to_page=263)
book.Split(multiple_columns=True)
book.RunOCR(type="splits", export_image=False)
book.CombineCleanGroup(ocr_grouping=True, group_type='norway')
book.RegexStructure("norway")

Make sure to install the correct language package for Tesseract.

# Check languages already installed: 
tesseract --list-langs

# Languages available for installation
apt-cache search tesseract-ocr

# Install the Norwegian language pack
sudo apt-get install tesseract-ocr-nor

Extracting headers

Start by converting XML files using the Pascal VOC data format to JSON. These files can be created by using the free software labelImg.

import os 
import hte.headers as hteheaders
os.chdir('/home/eirikb/Desktop')
header = Headers('train', 2022)
header.runbbxConverting()

Then convert the json file to csv.

hteheaders.convertFromJson('/home/eirikb/Desktop/training_xml/json-bbox', 'xml')

Finally, read the concent of the boxes.

hteheaders.ReadBoxes('json-bbox/xml.csv', 'hordaland', 'train', print_images=True)

Downloade more content

These functions create a list of relevant content from the API of the Norwegian National Library and then downloads a high resolution pdf version.

import os
import hte.NB as NB
os.chdir('/home/eirikb/Desktop/')

ListOfBooks = NB.ListNB(1920, 1930, 'skatteligning', 'digitidsskrift')
ListOfBooks = NB.ListOfBooks[0:1]

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

hte-0.0.27.tar.gz (17.3 kB view details)

Uploaded Source

Built Distribution

hte-0.0.27-py3-none-any.whl (17.1 kB view details)

Uploaded Python 3

File details

Details for the file hte-0.0.27.tar.gz.

File metadata

  • Download URL: hte-0.0.27.tar.gz
  • Upload date:
  • Size: 17.3 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.9.15

File hashes

Hashes for hte-0.0.27.tar.gz
Algorithm Hash digest
SHA256 1cba8103ced9b06d6ba2c2e604620c2fa2f77ee05352963c0c0e2e22fac3ee58
MD5 57c1677e55eed50c273f5cea6fb33a52
BLAKE2b-256 5df9aff5fca8e92e42328826891657a186ce4a1001b38fda9b416309b5844572

See more details on using hashes here.

File details

Details for the file hte-0.0.27-py3-none-any.whl.

File metadata

  • Download URL: hte-0.0.27-py3-none-any.whl
  • Upload date:
  • Size: 17.1 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.9.15

File hashes

Hashes for hte-0.0.27-py3-none-any.whl
Algorithm Hash digest
SHA256 67086be729dddb8b70d94c6d97780a38d534fa32f3b62133335715060e90abd7
MD5 311103ce225131ac769a809909964f80
BLAKE2b-256 edcec4d0212431064aa4982b607dbc899ce5874f6c59b226782bd211f3fa20ca

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page