Skip to main content

Convert HTML to ANS

Project description

https://img.shields.io/pypi/v/html2ans.svg https://img.shields.io/pypi/pyversions/html2ans.svg https://circleci.com/gh/washingtonpost/html2ans.svg?style=shield https://img.shields.io/pypi/l/html2ans.svg

This project provides a standardized method of parsing HTML elements into ANS elements. It is mainly used by Arc Publishing’s professional services team to migrate client data into the Arc platform, but can also be used for arbitrary conversion of HTML to JSON.

html2ans is hosted on pypi.

Please use the GitHub issue tracker to submit bugs or request features.

Full documentation can be found here.

Quickstart

Generating ANS from HTML

from html2ans.default import Html2Ans

parser = Html2Ans()
content_elements = parser.generate_ans(your_html_here)

Adding Parsers

Basic Addition

If you need to parse a certain tag in a customized way, you can write your own parser class and add it to the parsers Html2Ans will use like so:

from html2ans.default import Html2Ans

parser = Html2Ans()
parser.add_parser(YourCustomImageParser())
parser.generate_ans(your_html_here)

The default parser class (DefaultHtmlAnsParser or Html2Ans) has parsers for text, links, images, various social media embeds, etc.

Prioritized Addition

The parsers that can be used for each element type (e.g. img, p) are held in a list. If you want your parser to have a higher priority than the default parsers, add it like so:

from html2ans.default import Html2Ans

parser = Html2Ans()
parser.insert_parser('img', YourCustomImageParser(), 0)
parser.generate_ans(your_html_here)

Creating Custom Parsers

Missing from the snippet above is a definition of YourCustomImageParser. Before talking about how to create such a parser, let’s examine why you might need to do so.

The default image parser html2ans.parsers.image.ImageParser applies to html img tags only. Imagine you need to parse html whose images come in div tags (labelled with the class fancy-figure) that also hold a caption (labelled with the class fancy-caption). Here is a possible implementation of a parser for such images (note: this returns basic image ANS, not a reference):

from html2ans.parsers.image import ImageParser
from html2ans.parsers.base import ParseResult

class YourCustomImageParser(ImageParser):
    applicable_elements = ['div']
    applicable_classes = ['fancy-figure']

    def parse(self, element, *args, **kwargs):
        image_tag = element.find('img')
        caption_tag = element.find('p', {"class": "fancy-caption"})
        if image_tag:
            image = self.construct_output(image_tag)
            if caption_tag:
              image["caption"] = caption_tag.text
            return ParseResult(image, True)
        return ParseResult(None, True)

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Files for html2ans, version 3.0.1
Filename, size File type Python version Upload date Hashes
Filename, size html2ans-3.0.1.tar.gz (17.5 kB) File type Source Python version None Upload date Hashes View
Filename, size html2ans-3.0.1-py3.6.egg (42.3 kB) File type Egg Python version 3.6 Upload date Hashes View
Filename, size html2ans-3.0.1-py2.py3-none-any.whl (20.7 kB) File type Wheel Python version py2.py3 Upload date Hashes View

Supported by

AWS AWS Cloud computing Datadog Datadog Monitoring Facebook / Instagram Facebook / Instagram PSF Sponsor Fastly Fastly CDN Google Google Object Storage and Download Analytics Huawei Huawei PSF Sponsor Microsoft Microsoft PSF Sponsor NVIDIA NVIDIA PSF Sponsor Pingdom Pingdom Monitoring Salesforce Salesforce PSF Sponsor Sentry Sentry Error logging StatusPage StatusPage Status page