Skip to main content

Client library to download and publish models on the huggingface.co hub

Project description

huggingface_hub

Client library to download and publish models and other files on the huggingface.co hub

Build GitHub GitHub release

Do you have an open source ML library? We're looking to partner with a small number of other cool open source ML libraries to provide model hosting + versioning. https://twitter.com/julien_c/status/1336374565157679104 https://twitter.com/mnlpariente/status/1336277058062852096

Advantages are:

  • versioning is built-in (as hosting is built around git and git-lfs), no lock-in, you can just git clone away.
  • anyone can upload a new model for your library, just need to add the corresponding tag for the model to be discoverable – no more need for a hardcoded list in your code
  • Fast downloads! We use Cloudfront (a CDN) to geo-replicate downloads so they're blazing fast from anywhere on the globe
  • Usage stats and more features to come

Ping us if interested 😎


♻️ Partial list of implementations in third party libraries:


Download files from the huggingface.co hub

Integration inside a library is super simple. We expose two functions, hf_hub_url() and cached_download().

hf_hub_url

hf_hub_url() takes:

  • a repo id (e.g. a model id like julien-c/EsperBERTo-small i.e. a user or organization name and a repo name, separated by /),
  • a filename (like pytorch_model.bin),
  • and an optional git revision id (can be a branch name, a tag, or a commit hash)

and returns the url we'll use to download the actual files: https://huggingface.co/julien-c/EsperBERTo-small/resolve/main/pytorch_model.bin

If you check out this URL's headers with a HEAD http request (which you can do from the command line with curl -I) for a few different files, you'll see that:

  • small files are returned directly
  • large files (i.e. the ones stored through git-lfs) are returned via a redirect to a Cloudfront URL. Cloudfront is a Content Delivery Network, or CDN, that ensures that downloads are as fast as possible from anywhere on the globe.

cached_download

cached_download() takes the following parameters, downloads the remote file, stores it to disk (in a versioning-aware way) and returns its local file path.

Parameters:

  • a remote url
  • your library's name and version (library_name and library_version), which will be added to the HTTP requests' user-agent so that we can provide some usage stats.
  • a cache_dir which you can specify if you want to control where on disk the files are cached.

Check out the source code for all possible params (we'll create a real doc page in the future).


Publish models to the huggingface.co hub

Uploading a model to the hub is super simple too:

  • create a model repo directly from the website, at huggingface.co/new (models can be public or private, and are namespaced under either a user or an organization)
  • clone it with git
  • download and install git lfs if you don't already have it on your machine (you can check by running a simple git lfs)
  • add, commit and push your files, from git, as you usually do.

We are intentionally not wrapping git too much, so that you can go on with the workflow you’re used to and the tools you already know.

👀 To see an example of how we document the model sharing process in transformers, check out https://huggingface.co/transformers/model_sharing.html

Users add tags into their README.md model cards (e.g. your library_name, a domain tag like audio, etc.) to make sure their models are discoverable.

Documentation about the model hub itself is at https://huggingface.co/docs

API utilities in hf_api.py

You don't need them for the standard publishing workflow, however, if you need a programmatic way of creating a repo, deleting it (⚠️ caution), or listing models from the hub, you'll find helpers in hf_api.py.

We also have an API to query models by specific tags (e.g. if you want to list models compatible to your library)

huggingface-cli

Those API utilities are also exposed through a CLI:

huggingface-cli login
huggingface-cli logout
huggingface-cli whoami
huggingface-cli repo create

Need to upload large (>5GB) files?

To upload large files (>5GB 🔥), you need to install the custom transfer agent for git-lfs, bundled in this package.

To install, just run:

$ huggingface-cli lfs-enable-largefiles

This should be executed once for each model repo that contains a model file >5GB. If you just try to push a file bigger than 5GB without running that command, you will get an error with a message reminding you to run it.

Finally, there's a huggingface-cli lfs-multipart-upload command but that one is internal (called by lfs directly) and is not meant to be called by the user.


Visual integration into the huggingface.co hub

Finally, we'll implement a few tweaks to improve the UX for your models on the website – let's use Asteroid as an example:

asteroid-model

Model authors add an asteroid tag to their model card and they get the advantages of model versioning built-in

use-in-asteroid

We add a custom "Use in Asteroid" button.

asteroid-code-sample

When clicked you get a library-specific code sample that you'll be able to specify. 🔥


Feedback (feature requests, bugs, etc.) is super welcome 💙💚💛💜♥️🧡

Project details


Release history Release notifications | RSS feed

This version

0.0.6

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

huggingface_hub-0.0.6.tar.gz (22.8 kB view details)

Uploaded Source

Built Distribution

huggingface_hub-0.0.6-py3-none-any.whl (28.5 kB view details)

Uploaded Python 3

File details

Details for the file huggingface_hub-0.0.6.tar.gz.

File metadata

  • Download URL: huggingface_hub-0.0.6.tar.gz
  • Upload date:
  • Size: 22.8 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.3.0 pkginfo/1.7.0 requests/2.25.1 setuptools/49.2.1 requests-toolbelt/0.9.1 tqdm/4.58.0 CPython/3.9.1

File hashes

Hashes for huggingface_hub-0.0.6.tar.gz
Algorithm Hash digest
SHA256 7e1029f30c45db3013525da15bdd1abdf45c17c61e6f5f37f9fdc824b9636c96
MD5 2d48a97f92384cf82677f55000569475
BLAKE2b-256 5ffb8d1cf1f87418de83797cb73d5a3cf0ba780adf6edaf3f4ec73d14623d4d4

See more details on using hashes here.

File details

Details for the file huggingface_hub-0.0.6-py3-none-any.whl.

File metadata

  • Download URL: huggingface_hub-0.0.6-py3-none-any.whl
  • Upload date:
  • Size: 28.5 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.3.0 pkginfo/1.7.0 requests/2.25.1 setuptools/49.2.1 requests-toolbelt/0.9.1 tqdm/4.58.0 CPython/3.9.1

File hashes

Hashes for huggingface_hub-0.0.6-py3-none-any.whl
Algorithm Hash digest
SHA256 7648fa7ba51e3d876fb425eabc436a6288439b20ae21bb9e953db712a7303e12
MD5 2484ab252f08c7d17e1d4b3a8ab68910
BLAKE2b-256 81db6127470a04b6f9de82e4e8d55d9b971b7ed9d6e04a0ef91883f2e15d4078

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page