Skip to main content

Client for Humanloop API

Project description

humanloop@0.4.10

Requirements

Python >=3.7

Installing

pip install humanloop==0.4.10

Getting Started

from pprint import pprint
from humanloop import Humanloop, ApiException

humanloop = Humanloop(
    api_key="YOUR_API_KEY",
    openai_api_key="YOUR_OPENAI_API_KEY",
    ai21_api_key="YOUR_AI21_API_KEY",
    mock_api_key="YOUR_MOCK_API_KEY",
    anthropic_api_key="YOUR_ANTHROPIC_API_KEY",
)

try:
    # Chat
    chat_response = humanloop.chat(
        project="sdk-example",
        messages=[
            {
                "role": "user",
                "content": "Explain asynchronous programming.",
            }
        ],
        model_config={
            "model": "gpt-3.5-turbo",
            "max_tokens": -1,
            "temperature": 0.7,
            "chat_template": [
                {
                    "role": "system",
                    "content": "You are a helpful assistant who replies in the style of {{persona}}.",
                },
            ],
        },
        inputs={
            "persona": "the pirate Blackbeard",
        },
        stream=False,
    )
    pprint(chat_response.body)
    pprint(chat_response.body["project_id"])
    pprint(chat_response.body["data"][0])
    pprint(chat_response.body["provider_responses"])
    pprint(chat_response.headers)
    pprint(chat_response.status)
    pprint(chat_response.round_trip_time)
except ApiException as e:
    print("Exception when calling .chat: %s\n" % e)
    pprint(e.body)
    if e.status == 422:
        pprint(e.body["detail"])
    pprint(e.headers)
    pprint(e.status)
    pprint(e.reason)
    pprint(e.round_trip_time)

try:
    # Complete
    complete_response = humanloop.complete(
        project="sdk-example",
        inputs={
            "text": "Llamas that are well-socialized and trained to halter and lead after weaning and are very friendly and pleasant to be around. They are extremely curious and most will approach people easily. However, llamas that are bottle-fed or over-socialized and over-handled as youth will become extremely difficult to handle when mature, when they will begin to treat humans as they treat each other, which is characterized by bouts of spitting, kicking and neck wrestling.[33]",
        },
        model_config={
            "model": "gpt-3.5-turbo",
            "max_tokens": -1,
            "temperature": 0.7,
            "prompt_template": "Summarize this for a second-grade student:\n\nText:\n{{text}}\n\nSummary:\n",
        },
        stream=False,
    )
    pprint(complete_response.body)
    pprint(complete_response.body["project_id"])
    pprint(complete_response.body["data"][0])
    pprint(complete_response.body["provider_responses"])
    pprint(complete_response.headers)
    pprint(complete_response.status)
    pprint(complete_response.round_trip_time)
except ApiException as e:
    print("Exception when calling .complete: %s\n" % e)
    pprint(e.body)
    if e.status == 422:
        pprint(e.body["detail"])
    pprint(e.headers)
    pprint(e.status)
    pprint(e.reason)
    pprint(e.round_trip_time)

try:
    # Feedback
    feedback_response = humanloop.feedback(
        type="rating",
        value="good",
        data_id="data_[...]",
        user="user@example.com",
    )
    pprint(feedback_response.body)
    pprint(feedback_response.headers)
    pprint(feedback_response.status)
    pprint(feedback_response.round_trip_time)
except ApiException as e:
    print("Exception when calling .feedback: %s\n" % e)
    pprint(e.body)
    if e.status == 422:
        pprint(e.body["detail"])
    pprint(e.headers)
    pprint(e.status)
    pprint(e.reason)
    pprint(e.round_trip_time)

try:
    # Log
    log_response = humanloop.log(
        project="sdk-example",
        inputs={
            "text": "Llamas that are well-socialized and trained to halter and lead after weaning and are very friendly and pleasant to be around. They are extremely curious and most will approach people easily. However, llamas that are bottle-fed or over-socialized and over-handled as youth will become extremely difficult to handle when mature, when they will begin to treat humans as they treat each other, which is characterized by bouts of spitting, kicking and neck wrestling.[33]",
        },
        output="Llamas can be friendly and curious if they are trained to be around people, but if they are treated too much like pets when they are young, they can become difficult to handle when they grow up. This means they might spit, kick, and wrestle with their necks.",
        source="sdk",
        config={
            "model": "gpt-3.5-turbo",
            "max_tokens": -1,
            "temperature": 0.7,
            "prompt_template": "Summarize this for a second-grade student:\n\nText:\n{{text}}\n\nSummary:\n",
            "type": "model",
        },
    )
    pprint(log_response.body)
    pprint(log_response.headers)
    pprint(log_response.status)
    pprint(log_response.round_trip_time)
except ApiException as e:
    print("Exception when calling .log: %s\n" % e)
    pprint(e.body)
    if e.status == 422:
        pprint(e.body["detail"])
    pprint(e.headers)
    pprint(e.status)
    pprint(e.reason)
    pprint(e.round_trip_time)

Async

async support is available by prepending a to any method.

import asyncio
from pprint import pprint
from humanloop import Humanloop, ApiException

humanloop = Humanloop(
    api_key="YOUR_API_KEY",
    openai_api_key="YOUR_OPENAI_API_KEY",
    ai21_api_key="YOUR_AI21_API_KEY",
    mock_api_key="YOUR_MOCK_API_KEY",
    anthropic_api_key="YOUR_ANTHROPIC_API_KEY",
)


async def main():
    try:
        complete_response = await humanloop.acomplete(
            project="sdk-example",
            inputs={
                "text": "Llamas that are well-socialized and trained to halter and lead after weaning and are very friendly and pleasant to be around. They are extremely curious and most will approach people easily. However, llamas that are bottle-fed or over-socialized and over-handled as youth will become extremely difficult to handle when mature, when they will begin to treat humans as they treat each other, which is characterized by bouts of spitting, kicking and neck wrestling.[33]",
            },
            model_config={
                "model": "gpt-3.5-turbo",
                "max_tokens": -1,
                "temperature": 0.7,
                "prompt_template": "Summarize this for a second-grade student:\n\nText:\n{{text}}\n\nSummary:\n",
            },
            stream=False,
        )
        pprint(complete_response.body)
        pprint(complete_response.body["project_id"])
        pprint(complete_response.body["data"][0])
        pprint(complete_response.body["provider_responses"])
        pprint(complete_response.headers)
        pprint(complete_response.status)
        pprint(complete_response.round_trip_time)
    except ApiException as e:
        print("Exception when calling .complete: %s\n" % e)
        pprint(e.body)
        if e.status == 422:
            pprint(e.body["detail"])
        pprint(e.headers)
        pprint(e.status)
        pprint(e.reason)
        pprint(e.round_trip_time)


asyncio.run(main())

Streaming

Streaming support is available by suffixing a chat or complete method with _stream.

import asyncio
from humanloop import Humanloop

humanloop = Humanloop(
    api_key="YOUR_API_KEY",
    openai_api_key="YOUR_OPENAI_API_KEY",
    ai21_api_key="YOUR_AI21_API_KEY",
    mock_api_key="YOUR_MOCK_API_KEY",
    anthropic_api_key="YOUR_ANTHROPIC_API_KEY",
)


async def main():
    response = await humanloop.chat_stream(
        project="sdk-example",
        messages=[
            {
                "role": "user",
                "content": "Explain asynchronous programming.",
            }
        ],
        model_config={
            "model": "gpt-3.5-turbo",
            "max_tokens": -1,
            "temperature": 0.7,
            "chat_template": [
                {
                    "role": "system",
                    "content": "You are a helpful assistant who replies in the style of {{persona}}.",
                },
            ],
        },
        inputs={
            "persona": "the pirate Blackbeard",
        },
    )
    async for token in response.content:
        print(token)


asyncio.run(main())

Author

This Python package is automatically generated by Konfig

Project details


Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

humanloop-0.4.10.tar.gz (151.5 kB view details)

Uploaded Source

Built Distribution

humanloop-0.4.10-py3-none-any.whl (644.2 kB view details)

Uploaded Python 3

File details

Details for the file humanloop-0.4.10.tar.gz.

File metadata

  • Download URL: humanloop-0.4.10.tar.gz
  • Upload date:
  • Size: 151.5 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.7.16

File hashes

Hashes for humanloop-0.4.10.tar.gz
Algorithm Hash digest
SHA256 9eabf6bd1e1e5ca4f98d1d284addfe5299a3c90e554f90b74b31d847f89d145a
MD5 12c047c871e01f6b680762ca9f6a0665
BLAKE2b-256 0b8f35f3c53522c095aff64fa4dc99384594c8a6f06a01713a2f765ad25d5b21

See more details on using hashes here.

File details

Details for the file humanloop-0.4.10-py3-none-any.whl.

File metadata

  • Download URL: humanloop-0.4.10-py3-none-any.whl
  • Upload date:
  • Size: 644.2 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.7.16

File hashes

Hashes for humanloop-0.4.10-py3-none-any.whl
Algorithm Hash digest
SHA256 de16bc1c951d0cc109957d27ead94da3128afa21195a2a431345e6d005e59c76
MD5 e45591e1be125c3082da45443f9de90a
BLAKE2b-256 4e93b4d97238d752ab74798c6d30aeca94e2ea004e49ffe0133736dbaef2fc1f

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page