Skip to main content

Client for Humanloop API

Project description

humanloop@0.5.0

Requirements

Python >=3.7

Installing

pip install humanloop==0.5.0

Getting Started

from pprint import pprint
from humanloop import Humanloop, ApiException

humanloop = Humanloop(
    api_key="YOUR_API_KEY",
    openai_api_key="YOUR_OPENAI_API_KEY",
    ai21_api_key="YOUR_AI21_API_KEY",
    mock_api_key="YOUR_MOCK_API_KEY",
    anthropic_api_key="YOUR_ANTHROPIC_API_KEY",
)

try:
    # Chat
    chat_response = humanloop.chat(
        project="sdk-example",
        messages=[
            {
                "role": "user",
                "content": "Explain asynchronous programming.",
            }
        ],
        model_config={
            "model": "gpt-3.5-turbo",
            "max_tokens": -1,
            "temperature": 0.7,
            "chat_template": [
                {
                    "role": "system",
                    "content": "You are a helpful assistant who replies in the style of {{persona}}.",
                },
            ],
        },
        inputs={
            "persona": "the pirate Blackbeard",
        },
        stream=False,
    )
    pprint(chat_response.body)
    pprint(chat_response.body["project_id"])
    pprint(chat_response.body["data"][0])
    pprint(chat_response.body["provider_responses"])
    pprint(chat_response.headers)
    pprint(chat_response.status)
    pprint(chat_response.round_trip_time)
except ApiException as e:
    print("Exception when calling .chat: %s\n" % e)
    pprint(e.body)
    if e.status == 422:
        pprint(e.body["detail"])
    pprint(e.headers)
    pprint(e.status)
    pprint(e.reason)
    pprint(e.round_trip_time)

try:
    # Complete
    complete_response = humanloop.complete(
        project="sdk-example",
        inputs={
            "text": "Llamas that are well-socialized and trained to halter and lead after weaning and are very friendly and pleasant to be around. They are extremely curious and most will approach people easily. However, llamas that are bottle-fed or over-socialized and over-handled as youth will become extremely difficult to handle when mature, when they will begin to treat humans as they treat each other, which is characterized by bouts of spitting, kicking and neck wrestling.[33]",
        },
        model_config={
            "model": "gpt-3.5-turbo",
            "max_tokens": -1,
            "temperature": 0.7,
            "prompt_template": "Summarize this for a second-grade student:\n\nText:\n{{text}}\n\nSummary:\n",
        },
        stream=False,
    )
    pprint(complete_response.body)
    pprint(complete_response.body["project_id"])
    pprint(complete_response.body["data"][0])
    pprint(complete_response.body["provider_responses"])
    pprint(complete_response.headers)
    pprint(complete_response.status)
    pprint(complete_response.round_trip_time)
except ApiException as e:
    print("Exception when calling .complete: %s\n" % e)
    pprint(e.body)
    if e.status == 422:
        pprint(e.body["detail"])
    pprint(e.headers)
    pprint(e.status)
    pprint(e.reason)
    pprint(e.round_trip_time)

try:
    # Feedback
    feedback_response = humanloop.feedback(
        type="rating",
        value="good",
        data_id="data_[...]",
        user="user@example.com",
    )
    pprint(feedback_response.body)
    pprint(feedback_response.headers)
    pprint(feedback_response.status)
    pprint(feedback_response.round_trip_time)
except ApiException as e:
    print("Exception when calling .feedback: %s\n" % e)
    pprint(e.body)
    if e.status == 422:
        pprint(e.body["detail"])
    pprint(e.headers)
    pprint(e.status)
    pprint(e.reason)
    pprint(e.round_trip_time)

try:
    # Log
    log_response = humanloop.log(
        project="sdk-example",
        inputs={
            "text": "Llamas that are well-socialized and trained to halter and lead after weaning and are very friendly and pleasant to be around. They are extremely curious and most will approach people easily. However, llamas that are bottle-fed or over-socialized and over-handled as youth will become extremely difficult to handle when mature, when they will begin to treat humans as they treat each other, which is characterized by bouts of spitting, kicking and neck wrestling.[33]",
        },
        output="Llamas can be friendly and curious if they are trained to be around people, but if they are treated too much like pets when they are young, they can become difficult to handle when they grow up. This means they might spit, kick, and wrestle with their necks.",
        source="sdk",
        config={
            "model": "gpt-3.5-turbo",
            "max_tokens": -1,
            "temperature": 0.7,
            "prompt_template": "Summarize this for a second-grade student:\n\nText:\n{{text}}\n\nSummary:\n",
            "type": "model",
        },
    )
    pprint(log_response.body)
    pprint(log_response.headers)
    pprint(log_response.status)
    pprint(log_response.round_trip_time)
except ApiException as e:
    print("Exception when calling .log: %s\n" % e)
    pprint(e.body)
    if e.status == 422:
        pprint(e.body["detail"])
    pprint(e.headers)
    pprint(e.status)
    pprint(e.reason)
    pprint(e.round_trip_time)

Async

async support is available by prepending a to any method.

import asyncio
from pprint import pprint
from humanloop import Humanloop, ApiException

humanloop = Humanloop(
    api_key="YOUR_API_KEY",
    openai_api_key="YOUR_OPENAI_API_KEY",
    ai21_api_key="YOUR_AI21_API_KEY",
    mock_api_key="YOUR_MOCK_API_KEY",
    anthropic_api_key="YOUR_ANTHROPIC_API_KEY",
)


async def main():
    try:
        complete_response = await humanloop.acomplete(
            project="sdk-example",
            inputs={
                "text": "Llamas that are well-socialized and trained to halter and lead after weaning and are very friendly and pleasant to be around. They are extremely curious and most will approach people easily. However, llamas that are bottle-fed or over-socialized and over-handled as youth will become extremely difficult to handle when mature, when they will begin to treat humans as they treat each other, which is characterized by bouts of spitting, kicking and neck wrestling.[33]",
            },
            model_config={
                "model": "gpt-3.5-turbo",
                "max_tokens": -1,
                "temperature": 0.7,
                "prompt_template": "Summarize this for a second-grade student:\n\nText:\n{{text}}\n\nSummary:\n",
            },
            stream=False,
        )
        pprint(complete_response.body)
        pprint(complete_response.body["project_id"])
        pprint(complete_response.body["data"][0])
        pprint(complete_response.body["provider_responses"])
        pprint(complete_response.headers)
        pprint(complete_response.status)
        pprint(complete_response.round_trip_time)
    except ApiException as e:
        print("Exception when calling .complete: %s\n" % e)
        pprint(e.body)
        if e.status == 422:
            pprint(e.body["detail"])
        pprint(e.headers)
        pprint(e.status)
        pprint(e.reason)
        pprint(e.round_trip_time)


asyncio.run(main())

Streaming

Streaming support is available by suffixing a chat or complete method with _stream.

import asyncio
from humanloop import Humanloop

humanloop = Humanloop(
    api_key="YOUR_API_KEY",
    openai_api_key="YOUR_OPENAI_API_KEY",
    ai21_api_key="YOUR_AI21_API_KEY",
    mock_api_key="YOUR_MOCK_API_KEY",
    anthropic_api_key="YOUR_ANTHROPIC_API_KEY",
)


async def main():
    response = await humanloop.chat_stream(
        project="sdk-example",
        messages=[
            {
                "role": "user",
                "content": "Explain asynchronous programming.",
            }
        ],
        model_config={
            "model": "gpt-3.5-turbo",
            "max_tokens": -1,
            "temperature": 0.7,
            "chat_template": [
                {
                    "role": "system",
                    "content": "You are a helpful assistant who replies in the style of {{persona}}.",
                },
            ],
        },
        inputs={
            "persona": "the pirate Blackbeard",
        },
    )
    async for token in response.content:
        print(token)


asyncio.run(main())

Author

This Python package is automatically generated by Konfig

Project details


Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

humanloop-0.5.0.tar.gz (192.6 kB view details)

Uploaded Source

Built Distribution

humanloop-0.5.0-py3-none-any.whl (916.0 kB view details)

Uploaded Python 3

File details

Details for the file humanloop-0.5.0.tar.gz.

File metadata

  • Download URL: humanloop-0.5.0.tar.gz
  • Upload date:
  • Size: 192.6 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.7.16

File hashes

Hashes for humanloop-0.5.0.tar.gz
Algorithm Hash digest
SHA256 bb949c8e3172f70a3d0e7b456fe3d4f92628828293a5e67501f4dc80ac88f57a
MD5 62a2e5fe82612f2efe120c415d679f5f
BLAKE2b-256 276e7251eb0ca89f3f6ffbb3f2ebeef419501bf13c9641f18274bcb900badb44

See more details on using hashes here.

File details

Details for the file humanloop-0.5.0-py3-none-any.whl.

File metadata

  • Download URL: humanloop-0.5.0-py3-none-any.whl
  • Upload date:
  • Size: 916.0 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.7.16

File hashes

Hashes for humanloop-0.5.0-py3-none-any.whl
Algorithm Hash digest
SHA256 690efc6b8bf13156ad8b10452b7c8159f965f797119caf296f935a1e8d5777de
MD5 6ad3c052ce42a9600a29a798ec8f5a61
BLAKE2b-256 47ecabd32e8a514625b4f9e77e860f7b50e82b1c511b9461ffac1dee7d6b4208

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page