Skip to main content

An unofficial Python library for easy interaction with the Humio API

Project description

Humio API (unofficial lib)

This project requires Python>=3.6.1

This is an unofficial library for interacting with Humio's API. If you're looking for the official Python Humio library it can be found here: humiolib. This library mostly exists because the official library was very basic back in 2019 when I first needed this.

Installation

pip install humiocli

Main features

  • Asyncronous and syncronous streaming queries supported by httpx.
  • Queryjobs which can be polled once, or until completed.
  • Chainable relative time modifiers (similar to Splunk e.g. -1d@h-30m).
  • List repository details (NOTE: normal Humio users cannot see repos without read permission).
  • Easy env-variable based configuration.
  • Ingest data to Humio, although you probably want to use Filebeat for anything other than one-off things to your sandbox.
  • CLI companion tool available at humiocli.
  • Create and update parsers.
  • (PoC) An updateable timeseries, which can follow a moving timewindow using relative modifiers, optionally querying only the changed timewindow since previous update.

Usage

For convenience your Humio URL and token should be set in the environment variables HUMIO_BASE_URL and HUMIO_TOKEN. These can be set in ~/.config/humio/.env and loaded by humioapi.loadenv().

Query repositories

Create an instance of HumioAPI to get started

import humioapi
import logging
humioapi.initialize_logging(level=logging.INFO, fmt="human")

api = humioapi.HumioAPI(**humioapi.loadenv())
repositories = api.repositories()

Iterate over syncronous streaming searches sequentially

import humioapi
import logging
humioapi.initialize_logging(level=logging.INFO, fmt="human")

api = humioapi.HumioAPI(**humioapi.loadenv())
stream = api.streaming_search(
    query="log_type=trace user=someone",
    repos=['frontend', 'backend', 'integration'],
    start="-1week@day",
    stop="now"
)
for event in stream:
    print(event)

Itreate over asyncronous streaming searches in parallell, from a syncronous context

import asyncio
import humioapi
import logging
humioapi.initialize_logging(level=logging.INFO, fmt="human")

api = humioapi.HumioAPI(**humioapi.loadenv())
loop = asyncio.new_event_loop()

try:
    asyncio.set_event_loop(loop)
    tasks = api.async_streaming_tasks(
        loop,
        query="log_type=trace user=someone",
        repos=['frontend', 'backend', 'integration'],
        start="-1week@day",
        stop="now",
        concurrent_limit=10,
    )

    for event in humioapi.consume_async(loop, tasks):
        print(event)
finally:
    try:
        loop.run_until_complete(loop.shutdown_asyncgens())
    finally:
        asyncio.set_event_loop(None)
        loop.close()

Jupyter Notebook

pew new --python=python36 humioapi
# run the following commands inside the virtualenv
pip install git+https://github.com/gwtwod/humio-api.git
pip install ipykernel seaborn matplotlib
python -m ipykernel install --user --name 'python36-humioapi' --display-name 'Python 3.6 (venv humioapi)'

Start the notebook by running jupyter-notebook and choose the newly created kernel when creating a new notebook.

Run this code to get started:

import humioapi
import logging
humioapi.initialize_logging(level=logging.INFO, fmt="human")

api = humioapi.HumioAPI(**humioapi.loadenv())
results = api.streaming_search(query='log_type=trace user=someone', repos=['frontend', 'backend'], start="@d", stop="now")
for i in results:
    print(i)

To get a list of all readable repositories with names starting with 'frontend':

repos = sorted([k for k,v in api.repositories().items() if v['read_permission'] and k.startswith('frontend')])

Making a timechart (lineplot):

%matplotlib inline
import matplotlib.pyplot as plt
import seaborn as sns
import pandas as pd

sns.set(color_codes=True)
sns.set_style('darkgrid')

results = api.streaming_search(query='log_type=stats | timechart(series=metric)', repos=['frontend'], start=start, stop=stop)
df = pd.DataFrame(results)
df['_count'] = df['_count'].astype(float)

df['_bucket'] = pd.to_datetime(df['_bucket'], unit='ms', origin='unix', utc=True)
df.set_index('_bucket', inplace=True)

df.index = df.index.tz_convert('Europe/Oslo')
df = df.pivot(columns='metric', values='_count')

sns.lineplot(data=df)

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

humioapi-0.6.0.tar.gz (20.6 kB view details)

Uploaded Source

Built Distribution

humioapi-0.6.0-py3-none-any.whl (21.1 kB view details)

Uploaded Python 3

File details

Details for the file humioapi-0.6.0.tar.gz.

File metadata

  • Download URL: humioapi-0.6.0.tar.gz
  • Upload date:
  • Size: 20.6 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: poetry/1.0.10 CPython/3.6.8 Linux/3.10.0-1127.19.1.el7.x86_64

File hashes

Hashes for humioapi-0.6.0.tar.gz
Algorithm Hash digest
SHA256 80daa62274d271c541aff01f2c4f599f54607831113717e13a35e1f306941203
MD5 8fa1c34798d1722ca1d6190787c7c083
BLAKE2b-256 2a0c8b86f4927aec125d8c8ada15f994a6e6163557116e9f62db87951889f182

See more details on using hashes here.

File details

Details for the file humioapi-0.6.0-py3-none-any.whl.

File metadata

  • Download URL: humioapi-0.6.0-py3-none-any.whl
  • Upload date:
  • Size: 21.1 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: poetry/1.0.10 CPython/3.6.8 Linux/3.10.0-1127.19.1.el7.x86_64

File hashes

Hashes for humioapi-0.6.0-py3-none-any.whl
Algorithm Hash digest
SHA256 352ef301ce85b7f92e244b66628ccb2427b87e1c376867505cc749369eef19c9
MD5 d2285175a1fca2c93ca22ae0e2149a4f
BLAKE2b-256 19baab76a7c114e572b7f4b9b88240975e178202a5ba0370828d81ea42695373

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page