hundun is a python library for the exploration of chaos.
Project description
hundun
hundun is a python library for the exploration of chaos.
Please note that this library is in beta phase.
Example
Import the package's equation object.
from hundun import Differential
The important thing is to define parameter()
and equation()
as methods.
Creating a differential equation is easy using Differential
.
class Lorenz(Differential):
def parameter(self, s=10, r=28, b=8/3):
self.s, self.r, self.b = s, r, b
self.dim = 3
def equation(self, t, u):
s, r, b = self.s, self.r, self.b
x, y, z = u
x_dot = s*(y - x)
y_dot = r*x - y - x*z
z_dot = x*y - b*z
return x_dot, y_dot, z_dot
Various methods can be used by creating an instance of Lorenz
.
As a test, use .solve_n_times
to solve the equation in 5000 steps.
(This method uses RK4 by default.)
l = Lorenz.on_attractor()
l.solve_n_times(5000)
At this time, you can get the time and orbit by using .t_seq
and .u_seq
.
It is possible to calculate the Lyapunov exponent(spectrum) from the orbit using Lorenz
above.
In addition, a calculation method based on QR decomposition can be used by defining jacobian()
(Jacoby matrix).
class Lorenz2(Lorenz):
def jacobian(self):
s, r, b = self.s, self.r, self.b
x, y, z = self.u
j = [[-s, s, 0],
[r-z, -1, -x],
[y, x, -b]]
return j
calc_les
automatically determines and calculates.
from hundun.lyapunov import calc_les
les_seq, les = calc_les(Lorenz2)
Also, you can easily draw by using Drawing
of utils.
from hundun.utils import Drawing
d = Drawing(1, 2, three=1, number=True)
d[0,0].plot(l.u_seq[:,0], l.u_seq[:,1], l.u_seq[:,2])
d[0,0].set_axis_label('x', 'y', 'z')
for i in range(3):
d[0,1].plot(les_seq[:, i], label=fr'$\lambda_{i+1}=${les[i]:>+8.3f}')
d[0,1].legend(loc='center right')
d[0,1].set_axis_label('step', r'\lambda')
d.show()
Currently, time series analysis methods are being added!
Documentation
- Installation
- Exploration
- Equations
- Dynamical systems
- Lyapunov exponents
- Roadmap
- Dependencies
- Reference
Installation
hundun can be installed via pip from PyPI.
pip install hundun
To use the latest code (unstable), checkout the dev branch and run above command in the main hundun directory.
pip install .
Exploration
Introduction
The following example uses a 1-dim time series (x) obtained from the Lorenz equation. Equation were numerically integrated by Runge-Kutta method with a time with h=0.01 for 5000 time steps.
u_seq = np.load('sample/data/lorenz_x.npy')
Embedding (埋め込み)
Generate a time series using the embedding dimension D
and the time lag L
.
from hundun import embedding
Generate a time series by using embedding(u_seq, T, D)
and plot the result.
e_seq = embedding(u_seq, 10, 2)
d = Drawing()
d[0,0].plot(e_seq[:, 0], e_seq[:, 1])
d[0,0].set_axis_label('x(t)', 'x(t+T)')
d.show()
The result of calculation with D=3 and shifting T is shown below.
Estimate the time lag
Autocorrelation Function
def acf(u_seq, tau):
Calculate the autocorrelation function from the time series data. Finds a point where the autocorrelation function can be considered 0.
In the example below, the time lag is determined based on Bartlett's formula. Other conditions include the first local minimums and 1/e or less.
from hundun.exploration import acf, get_minidx_below_seq, bartlett
from hundun.utils import Drawing
import numpy as np
u_seq = np.load('lorenz_x.npy')
rho_seq = acf(u_seq, 400)
var_seq = bartlett(rho_seq)
idx_list = get_minidx_below_seq(rho_seq, var_seq)
d = Drawing()
for i, idx in enumerate(idx_list):
d[0,0].plot(rho_seq[:, i], label='acf')
d[0,0].plot(var_seq[:, i], label='standard error')
d[0,0].scatter(idx, rho_seq[idx, i], zorder=10, marker='o')
d[0,0].legend()
d[0,0].axhline(0, color="black", linewidth=0.5, linestyle='dashed')
d[0,0].set_axis_label('Time~lag', 'Correlation~coefficient')
d.show()
Mutual Information
def mutual_info(u_seq, tau):
Create a histogram from time series data and calculate mutual information.
from hundun.exploration import mutual_info, get_bottom
from hundun.utils import Drawing
import numpy as np
u_seq = np.load('lorenz_x.npy')
mi_seq = mutual_info(u_seq, 300)
bottom = get_bottom(mi_seq)
d = Drawing()
for i, idx in enumerate(bottom):
d[0,0].plot(mi_seq[:, i])
d[0,0].scatter(idx, mi_seq[idx, i])
d[0,0].set_axis_label('Time~lag', 'Mutual~Information~[bit]')
d.show()
Estimate the generalized dimension
Grassberger-Procaccia Algorithm
[Grassberger_1983] [Grassberger_1983_2]
def calc_correlation_dimention_w_gp(
e_seq, base=8, h_r=0.05, loop=200, batch_ave=10, normalize=True):
The correlation dimension(D2) is obtained by calculating the correlation integral C(r).
As an example, The result when fixed at T=1 is shown below.
import numpy as np
from hundun.utils import Drawing
from hundun import embedding
from hundun.exploration import calc_correlation_dimention_w_gp
u_seq = np.load('lorenz_x.npy')
d= Drawing(1, 2)
D_min, D_max = 1, 9
D2s = []
for i in range(D_min, D_max+1):
e_seq = embedding(u_seq, 1, i)
D2, rs, crs = calc_correlation_dimention_w_gp(e_seq)
d[0,0].plot(np.log(rs), np.log(crs), label=f'${i}$: {D2:.3f}')
D2s.append(D2)
d[0,0].legend()
d[0,0].set_axis_label('\log ~r', '\log ~C(r)')
d[0,1].plot(range(D_min, D_max+1), D2s)
d[0,1].plot([1, D_max], [1, D_max],
color='black', linewidth=0.5, linestyle='dashed')
d[0,1].set_aspect('equal')
d[0,1].set_axis_label('Embedding ~dimension', 'Correlation ~dimension')
d.show()
In the GP-method, D2 is calculated directly from the attractor. It cannot be evaluated accurately from 1-dim data. When calculating with 3-dim data, it can be calculated with some accuracy.
l = Lorenz.on_attractor()
l.solve_n_times(5000)
u_seq = l.u_seq
Lyapunov dimension
Calculate using calc_lyapunov_dimension
.
See here -> [Lyapunov dimension]
Estimate the acceptable minimum embedding dimension
False Nearest Neighbors - Algorithm
def fnn(u_seq, threshold_R=10, threshold_A=2, T=50, D_max=10):
import numpy as np
from hundun.utils import Drawing
from hundun.exploration import fnn
u_seq = np.load('lorenz_x.npy')
percentage_list = fnn(u_seq)
d = Drawing()
d[0,0].plot(range(1, len(percentage_list)+1), percentage_list*100,
marker='.', markersize=10)
d[0,0].axhline(1, color="black", linewidth=0.5)
d[0,0].set_axis_label('Dimension', 'False~NN~Percentage')
d.show()
Averaged False Neighbors - Algorithm
def afn(u_seq, T=1, D_max=10):
from itertools import cycle
from hundun.utils import Drawing
from hundun.exploration import afn
import matplotlib as mpl
import numpy as np
color = cycle(mpl.rcParams['axes.prop_cycle'])
u_seq = np.load('lorenz_x.npy')
line, marker = {'E1':'solid', 'E2':'dashed'}, {'E1':'o', 'E2':'s'}
d = Drawing()
for T in [1, 5, 10]:
Es = afn(u_seq, T=T)
c = next(color)['color']
for label, E in zip(['E1', 'E2'], Es):
d[0,0].plot(range(1, len(E)+1), E,
marker=marker[label], markersize=5,
label=f'{label}-{T}', linestyle=line[label], color=c)
d[0,0].axhline(1, color="black", linewidth=0.5)
d[0,0].set_axis_label('Dimension', 'E1~&~E2')
d[0,0].legend(loc='lower right')
d.show()
Wayland Test
from hundun.exploration import wayland
from hundun.utils import Drawing
import numpy as np
u_seq = np.load('lorenz_x.npy')
median_e_trans_ave = wayland(u_seq)
d = Drawing()
d[0,0].plot(range(1, len(median_e_trans_ave)+1), median_e_trans_ave)
d[0,0].scatter(median_e_trans_ave.argmin()+1, median_e_trans_ave.min())
d[0,0].set_axis_label('Dimension', 'median(E_{trans})')
d[0,0].set_yscale('log')
d.show()
Visualization
Recurrence Plot
def calc_recurrence_plot(u_seq, rule=simple_threshold, *params, **kwargs):
def show_recurrence_plot(u_seq, rule=simple_threshold, cmap=False, *params, **kwargs):
Create Recurrence Plot(RP) from time series data.
calc_~
returns the result of RP as a matrix.
show_~
displays the result.
from hundun.exploration import show_recurrence_plot
import numpy as np
u_seq = np.load('lorenz_x.npy')
show_recurrence_plot(u_seq)
The drawing rule uses the simplest one(simple_threshold
).
def simple_threshold(ds, theta=0.5):
if (d_max:=_np.max(ds))!=0:
pv = (ds/d_max>theta)*255
return pv
return ds
This can be changed. The rule
just takes a matrix and returns the matrix.
from hundun.exploration import show_recurrence_plot
import numpy as np
def new_threshold(ds, func):
if (d_max:=np.max(ds))!=0:
pv = func(ds/d_max)*255
return np.uint8(pv)
return ds
u_seq = np.load('lorenz_x.npy')
show_recurrence_plot(u_seq, cmap=True, rule=new_threshold, func=np.log)
Equations
Some equations have already been defined.
from hundun.equations import Lorenz, Henon, Logistic
Lorenz equation
[Lorenz_1963]
By default, s=10, r=28, b=8/3
is set.
Lorenz
is a class that inherits from Differential
.
This class has a dimensionless time t and a variable u. For Lorenz, u = (x, y, z).
on_attractor
@classmethod
def on_attractor(cls, t0=None, u0=None, h=0.01, *, T_0=5000, **params):
Calculate from a random initial position [0,1) and place the trajectory on the attractor.
By default, 5000 steps are calculated.
By setting t0
and u0
, the initial position can be set arbitrarily.
attractor = Lorenz.on_attractor()
The calculation process is as shown in the figure from the blue point to the orange point.
solve_n_times
def solve_n_times(self, n):
Calculate n times.
After the calculation, you can get the time and orbit by using .t_seq
and .u_seq
.
l = Lorenz.on_attractor()
l.solve_n_times(5000)
u_seq, t_seq = l.u_seq, l.t_seq
Henon map
[Hénon_1976]
By default, a=1.4, b=0.3
is set.
Since Henon map has a basin of attraction, it is very important to select the initial value. You can check if it is in orbit by using .inf
.
while True:
henon = Henon.on_attractor()
if not henon.inf:
break
Logistic map
By default, a=4.0
is set.
Dynamical Systems
You can create maps and equations by using Difference
and Differential
and analyze the created instance.
Difference / Differential
from hundun import Difference, Differential
There is no big difference between the two.
The difference in .solve
is whether to map or use runge-kutta.
The important thing is to define parameter()
and equation()
as methods.
parameter()
You must always define dimention(self.dim
). (It is used to set the initial value and calculate the Lyapunov exponents.)
(1) If set self.xxx
, can be used in equation()
.
equation()
Two arguments, time(t
) and variable(u
), are required.
(2) Since u
is self.dim
-dimensional variable, its value can be got using the unpack syntax.
(3) The return value does not have to be a vector.
example
Here is an example of defining Lorenz. This time, set the parameter self.s
in parameter()
.
Refer to [Lorenz equation] for how to use it.
class Lorenz(Differential):
def parameter(self, s=10):
self.dim = 3
self.s = s #(1)
def equation(self, t, u):
r, b = 28, 8/3
s = self.s #(1)
x, y, z = u #(2)
x_dot = s*(y - x)
y_dot = r*x - y - x*z
z_dot = x*y - b*z
return x_dot, y_dot, z_dot
# (3) OK:
# np.array([x_dot, y_dot, z_dot])
# [x_dot, y_dot, z_dot]
Lyapunov exponents
Calculate the Lyapunov exponents (Lyapunov spectrum).
from hundun import calc_les
calc_les
def calc_les(system, **options):
Specify a Difference
or Differential
object for system.
Difference
Jacobin is always required because it is calculated on the QR base. (In the case of 1-dim, a different method is used instead of QR-based to speed up the calculation.)
As an example, search for parameters of Henon. It is possible to estimate the range in which the LEs is positive.
from itertools import product
from hundun.equations.henon import Henon
from matplotlib.colors import Normalize
import numpy as np
from hundun import calc_les
from hundun.utils import Drawing
N_a, N_b = 50, 50
a_list = np.linspace(0, 2.1, N_a)
b_list = np.linspace(0, 1.1, N_b)
les_list = []
for a, b in product(a_list, b_list):
for _ in range(10):
try:
_, les = calc_les(Henon, b=b, a=a)
les_list.append(les)
break
except ValueError:
pass
else:
les_list.append((None, None))
les = np.array(les_list).reshape(N_b, N_a, 2)
d=Drawing(1, 2)
for i in range(2):
le = les[:,:,i]
sf = d[0,i].contourf(*np.meshgrid(a_list, b_list), le, cmap='jet',
norm=Normalize(vmin=-2, vmax=1))
cb = d.fig.colorbar(sf, ax=d[0,i], orientation='horizontal')
d[0,i].set_axis_label('a', 'b')
d[0,i].set_title(f'$\lambda_{i+1}$')
d.show()
As an example, calculate the LE for parameter A of Logistic map.
import math
from hundun import calc_les
from hundun.equations import Logistic
from hundun.utils import Drawing
L, dh = 400+1, 0.01
d = Drawing()
le_list = []
for i in range(L):
a = i*dh
_, le = calc_les(Logistic, N=500, a=a)
le_list.append(le)
d[0,0].plot([dh*i for i in range(L)], le_list)
for y in [0, math.log(2)]:
d[0,0].axhline(y, color="black", linewidth=0.5)
d[0,0].set_axis_label('a', '\lambda')
d[0,0].set_ylim(-5, 1)
d.show()
Differential
As an example, compare with and without Jacobian Matrix(jacobian
).
from hundun import calc_les
from hundun.equations import Lorenz
from hundun.utils import Drawing
class Lorenz_No_Jacobian(Lorenz):
def jacobian(self):
return None
u0 = Lorenz.on_attractor().u
d = Drawing(1, 2)
for j, system in enumerate([Lorenz, Lorenz_No_Jacobian]):
les_seq, les = calc_les(system, u0=u0)
for i, le in enumerate(les):
p, = d[0, j].plot(les_seq[:, i],
label=fr'$\lambda_{i+1}=$ {le:>+8.3f}')
d[0,j].legend(loc='center right')
d[0,j].set_axis_label('step', '\lambda')
d[0,j].set_ylim(-16, 3)
d.show()
Lyapunov dimension
def calc_lyapunov_dimension(les):
Calculate the Lyapunov dimension from LEs.
from hundun import calc_les, calc_lyapunov_dimension
from hundun.equations import Lorenz
_, les = calc_les(Lorenz)
D_L = calc_lyapunov_dimension(les)
print(D_L)
2.0673058796702217
To Do
- Synchronization
- Time series
- Baisn of attraction
- sample
Dependencies
{ Numpy } { Scipy } { Matplotlib }
Reference
Deterministic Nonperiodic Flow
(1963) Edward N. Lorenz
DOI: 10.1175/1520-0469(1963)020<0130:DNF>2.0.CO;2
A two-dimensional mapping with a strange attractor
(1976) M. Hénon
DOI: 10.1007/BF01608556
Simple mathematical models with very complicated dynamics
(1976) Robert M. May
DOI: 10.1038/261459a0
Measuring the strangeness of strange attractors
(1983) Peter Grassberger and Itamar Procaccia
DOI: 10.1016/0167-2789(83)90298-1
Characterization of Strange Attractors
(1983) Peter Grassberger and Itamar Procaccia
DOI: 10.1103/PhysRevLett.50.346
Determining embedding dimension for phase-space reconstruction using a geometrical construction
(1992) Matthew B. Kennel, Reggie Brown, and Henry D. I. Abarbanel
DOI: 10.1103/PhysRevA.45.3403
Practical method for determining the minimum embedding dimension of a scalar time series
(1997) Liangyue Cao
DOI: 10.1016/S0167-2789(97)00118-8
Recognizing determinism in a time series
(1993) Wayland, Richard and Bromley, David and Pickett, Douglas and Passamante, Anthony
DOI: 10.1103/PhysRevLett.70.580
Project details
Release history Release notifications | RSS feed
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
Built Distribution
File details
Details for the file hundun-0.0.41.tar.gz
.
File metadata
- Download URL: hundun-0.0.41.tar.gz
- Upload date:
- Size: 25.0 kB
- Tags: Source
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/3.7.1 importlib_metadata/4.10.0 pkginfo/1.8.2 requests/2.27.1 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.8.12
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 68d802a467969bb14942d7011c94bd2a67cd2e12b81ed0e53a15662400dd30f4 |
|
MD5 | 04aabbd7dad0307528c6d983be565f98 |
|
BLAKE2b-256 | 3ade3748a877076d851b82e0b69b5d24529ff8983989f98c411e1ea20b42ed5b |
Provenance
File details
Details for the file hundun-0.0.41-py3-none-any.whl
.
File metadata
- Download URL: hundun-0.0.41-py3-none-any.whl
- Upload date:
- Size: 24.1 kB
- Tags: Python 3
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/3.7.1 importlib_metadata/4.10.0 pkginfo/1.8.2 requests/2.27.1 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.8.12
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | dc1e19e25da9175d8608f0203d90f041b9a668104930ec20c249b4d778e96515 |
|
MD5 | 17f26ea1f4ce24404b0015d657c7cd61 |
|
BLAKE2b-256 | 1d7d7eefc00ba4559df7fa1c1346635c8bb9b6c333ce161877d4bea90dc60da0 |