Skip to main content

Python 3 implementation of the Hungarian Algorithm for the assignment problem.

Project description

Hungarian Algorithm

A Python 3 graph implementation of the Hungarian Algorithm (a.k.a. the Kuhn-Munkres algorithm), an O(n^3) solution for the assignment problem, or maximum/minimum-weighted bipartite matching problem.

Usage

Install

pip3 install hungarian-algorithm

Import

from hungarian_algorithm import algorithm

Inputs

The function find_matching takes 3 inputs:

algorithm.find_matching(G, matching_type = 'max', return_type = 'list')
  • G = the bipartite graph (a dictionary of dictionaries*)
  • matching_type = 'max' or 'min' (maximum-weighted matching or minimum-weighted matching)
  • return_type = 'list' or 'total' (return a list of matched vertices and weights or the total weight*)

*See examples below.

Examples

Example 1 (maximum-weighted matching)

Suppose you're choosing 11 starting positions for a soccer team.

The 11 players submit their top 3 position choices, and it is your job to create the optimal team.

The situation can be modeled with a weighted bipartite graph:

Example

Then, if you assign weight 3 to blue edges, weight 2 to red edges and weight 1 to green edges, your job is simply to find the matching that maximizes total weight. This is the assignment problem, for which the Hungarian Algorithm offers a solution.

Notice: although no one has chosen LB, the algorithm will still assign a player there. In fact, the first step of the algorithm is to create a complete bipartite graph (all possible edges exist), giving new edges weight 0.

Define a weighted bipartite graph in the following manner:

G = {
	'Ann': {'RB': 3, 'CAM': 2, 'GK': 1},
	'Ben': {'LW': 3, 'S': 2, 'CM': 1},
	'Cal': {'CAM': 3, 'RW': 2, 'SWP': 1},
	'Dan': {'S': 3, 'LW': 2, 'GK': 1},
	'Ela': {'GK': 3, 'LW': 2, 'F': 1},
	'Fae': {'CM': 3, 'GK': 2, 'CAM': 1},
	'Gio': {'GK': 3, 'CM': 2, 'S': 1},
	'Hol': {'CAM': 3, 'F': 2, 'SWP': 1},
	'Ian': {'S': 3, 'RW': 2, 'RB': 1},
	'Jon': {'F': 3, 'LW': 2, 'CB': 1},
	'Kay': {'GK': 3, 'RW': 2, 'LW': 1, 'LB': 0}
}

thus defining a complete bipartite graph G = (L ∪ R, E) with:

  • Vertex set L (Players) = {'Ann', 'Ben', 'Cal', 'Dan', 'Ela', 'Fae', 'Gio', 'Hol', 'Ian', 'Jon', 'Kay'}
  • Vertex set R (Positions) = {'GK', 'LB', 'SWP', 'CB', 'RB', 'LW', 'CM', 'CAM', 'RW', 'F', 'S'}
  • Edge set E = {e = (Player, Position) : for all Players, for all Positions}
  • Weight function:
    • w(Player, Position) = 3 for a first choice
    • w(Player, Position) = 2 for a second choice
    • w(Player, Position) = 1 for a third choice
    • w(Player, Position) = 0 otherwise

Then pass the graph as an input:

algorithm.find_matching(G, matching_type = 'max', return_type = 'list' )

You will get the output:

[(('Ann', 'RB'), 3), (('Gio', 'CB'), 0), (('Ben', 'LW'), 3), (('Ian', 'RW'), 2), (('Cal', 'CAM'), 3), (('Fae', 'CM'), 3), (('Ela', 'LB'), 0), (('Kay', 'GK'), 3), (('Jon', 'F'), 3), (('Dan', 'S'), 3), (('Hol', 'SWP'), 1)]

If you only need the total weight:

algorithm.find_matching(G, matching_type = 'max', return_type = 'total' )

You will get the output:

24

Example 2 (minimum-weighted matching)

Suppose you manage a group of drivers delivering packages to various locations.

You estimate the time of delivery for each driver to deliver each package, and it is your job to save the most time.

This time, we will model the situation with a matrix:

Example

where the values in the matrix give the number of minutes it would take each driver to deliver each package. Again, this is the assignment problem, except this time we seek to find a minimum-weighted matching to minimize the total amount of delivery time.

Define a weighted bipartite graph in the following manner:

H = {
	'A': { '#191': 22, '#122': 14, '#173': 120, '#121': 21, '#128': 4, '#104': 51 },
	'B': { '#191': 19, '#122': 12, '#173': 172, '#121': 21, '#128': 28, '#104': 43 },
	'C': { '#191': 161, '#122': 122, '#173': 2, '#121': 50, '#128': 128, '#104': 39 },
	'D': { '#191': 19, '#122': 22, '#173': 90, '#121': 11, '#128': 28, '#104': 4 },
	'E': { '#191': 1, '#122': 30, '#173': 113, '#121': 14, '#128': 28, '#104': 86 },
	'F': { '#191': 60, '#122': 70, '#173': 170, '#121': 28, '#128': 68, '#104': 104 },
}

Then pass the graph as an input (this time, remember to change  matching_type = 'min' to find a minimum-weighted matching):

algorithm.find_matching(H, matching_type = 'min', return_type = 'list' )

You will get the output:

[(('A', '#128'), 4), (('B', '#122'), 12), (('C', '#173'), 2), (('D', '#104'), 4), (('E', '#191'), 1), (('F', '#121'), 28)]

History

The algorithm was published by Harold Kuhn in 1955 paper The Hungarian Method for the Assignment Problem. Kuhn's work relied heavily on that of Hungarian mathematicians Dénes Kőnig and Jenő Egévary.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

hungarian_algorithm-0.1.11.tar.gz (9.4 kB view details)

Uploaded Source

Built Distribution

hungarian_algorithm-0.1.11-py3-none-any.whl (10.3 kB view details)

Uploaded Python 3

File details

Details for the file hungarian_algorithm-0.1.11.tar.gz.

File metadata

  • Download URL: hungarian_algorithm-0.1.11.tar.gz
  • Upload date:
  • Size: 9.4 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.1.1 pkginfo/1.5.0.1 requests/2.23.0 setuptools/46.1.3 requests-toolbelt/0.9.1 tqdm/4.45.0 CPython/3.7.5

File hashes

Hashes for hungarian_algorithm-0.1.11.tar.gz
Algorithm Hash digest
SHA256 fa9d54d976ac3b1b69b4c60353cb47051cafeb45d34a0624dea5907f573d7719
MD5 446d8926937b3382e1a9867ea344e7c5
BLAKE2b-256 7e28ac78b5cf5da7788fc839025e360554a8a8c259e5be74c59ca51bf873a3d2

See more details on using hashes here.

File details

Details for the file hungarian_algorithm-0.1.11-py3-none-any.whl.

File metadata

  • Download URL: hungarian_algorithm-0.1.11-py3-none-any.whl
  • Upload date:
  • Size: 10.3 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.1.1 pkginfo/1.5.0.1 requests/2.23.0 setuptools/46.1.3 requests-toolbelt/0.9.1 tqdm/4.45.0 CPython/3.7.5

File hashes

Hashes for hungarian_algorithm-0.1.11-py3-none-any.whl
Algorithm Hash digest
SHA256 a3812cb527329ef09e4ed4c9eba58374677e473a26d637593a9a00d72e49fd49
MD5 ace09efad3c4936aab24665d8a649e6c
BLAKE2b-256 08e0117a3f5b9469fa1f74adb7810c465776e2d6145189fbb7bcaa02b5f7c95f

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page