Find what you're looking for in a flash with Huntela.
Project description
Huntela
Huntela is a savvy search module that's an alternative to the default filter
method. It offers a range of powerful search functions, including fuzzy search, binary search, and searches for least/most frequent items in a list.
>>> import huntela
>>>
>>> huntela.fuzzy_search(term='app', items=['app', 'paper', 'hello', 'world'])
[
{'confidence': 1, 'index': 0, 'value': 'app'},
{'confidence': 0.6, 'index': 1, 'value': 'paper'}
]
>>>
>>> huntela.binary_search(term='a', items=['a', 'b', 'c'])
{'confidence': 1, 'index': 0, 'value': 'a'}
>>>
>>> huntela.search_for_least_frequent_items(size=1, ['a', 'b', 'a', 'e', 'a', 'e'])
[
{'confidence': 1, 'index': [1], 'value': 'b'}
]
>>>
>>> huntela.search_for_most_frequent_items(size=2, ['a', 'b', 'a', 'e', 'a', 'e'])
[
{'confidence': 1, 'value': 'a', 'index': [0, 2, 4]},
{'confidence': 1, 'value': 'e', 'index': [3, 5]}
]
With a variety of algorithms to choose from, finding what you're looking for has never been easier.
From binary search to linear search and more, Huntela has everything you need to quickly and efficiently search through your data. With a simple, intuitive interface and lightning-fast performance, Huntela is the go-to package for anyone who needs to search through data.
Whether you're a data scientist, engineer, or developer, Huntela will help you find what you need.
Installation
Huntela officially supports Python 3.9 upwards.
Huntela is available on PyPi and it can be installed using pip
python -m pip install huntela
Reference
Parameters
Each of the search methods take in three (3) parameters.
term
: The term being searched for.items
: The items parameter could then be a iterable of the supported term types.key
(Optional): Only to be specified if theterm
is adict
. In which case, thekey
will be used to pick the corresponding values from the list ofitems
.
Supported Types
Term
The term being searched for could be one of the following supported types:
int
float
str
dict[str, Any]
Items
The items parameter could then be a iterable of the supported term types. That is,
List[int]
List[float]
List[str]
List[Dict[str, str]]
Results
Each search result is a dict
which contains the following item:
confidence
: A number from0.0
to1.0
that indicates the degree of relevance of the search match.value
: The specific item that matched the search criteria.index
: The position, or a list of positions where the search term was found.
Methods
fuzzy_search(term, items, key=None) -> List[Result]
: Searches a list of items for a given search term and returns a list of results which exactly or closely match the search term.
>>> huntela.fuzzy_search(term='app', items=['app', 'paper', 'hello', 'world'])
[
{'confidence': 1, 'index': 0, 'value': 'app'},
{'confidence': 0.6, 'index': 1, 'value': 'paper'}
]
binary_search(term, items, key=None) -> List[Result]
: Performs a binary search on a list to find a target value.
>>> huntela.binary_search(
term='Alex',
items=[{'name': 'Alex'}, {'name': 'Mike'}, {'name': 'John'}],
key='name'
)
{'confidence': 1, 'index': 0, 'value': 'Ade'}
search_for_least_frequent_items
: Finds the k least frequent item(s) in a list.
>>> search_for_least_frequent_items(size, items)
[
{'confidence': 1, 'index': [0], 'value': 1},
{'confidence': 1, 'index': [2, 3], 'value': 3}
]
search_for_most_frequent_items
: Finds the k most frequent item(s) in a list.
>>> search_for_most_frequent_items(2, [1, 2, 2, 3, 3, 3])
[
{'confidence': 1, 'index': [3, 4, 5], 'value': 3},
{'confidence': 1, 'index': [1, 2], 'value': 2}
]
Project details
Release history Release notifications | RSS feed
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
Built Distribution
File details
Details for the file huntela-0.0.18.tar.gz
.
File metadata
- Download URL: huntela-0.0.18.tar.gz
- Upload date:
- Size: 7.9 kB
- Tags: Source
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/4.0.2 CPython/3.9.13
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | ac4ba40bbdcb819fb88f881a16c040a1234ad8104073b027c2f69e5cc2640949 |
|
MD5 | e54ba08d07c5cdb580573df22ebfa794 |
|
BLAKE2b-256 | 59b6d242b647df7a41b4f896ed3c7cb503efe3b7b19316e521c10364a3eac93b |
Provenance
File details
Details for the file huntela-0.0.18-py3-none-any.whl
.
File metadata
- Download URL: huntela-0.0.18-py3-none-any.whl
- Upload date:
- Size: 8.3 kB
- Tags: Python 3
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/4.0.2 CPython/3.9.13
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 252c617c97cdc792f4a17fdb69749de533071f24914fdc823cab3131ff3fa43e |
|
MD5 | 7cd23c666c6bcc9953893648e3737ce1 |
|
BLAKE2b-256 | d42067936556351b1f6d8024988ecb54efb258f10bd7958d563a6037ce5df85f |