Skip to main content

Hurst exponent evaluation and R/S-analysis

Project description

hurst

Hurst exponent evaluation and R/S-analysis

Python 2.7 Python 3x Build Status pypi Downloads

hurst is a small Python module for analysing random walks and evaluating the Hurst exponent (H).

H = 0.5 — Brownian motion,
0.5 < H < 1.0 — persistent behavior,
0 < H < 0.5 — anti-persistent behavior.

Installation

Install hurst module with
pip install hurst
or
pip install -e git+https://github.com/Mottl/hurst#egg=hurst

Usage

import numpy as np
import matplotlib.pyplot as plt
from hurst import compute_Hc, random_walk

# Use random_walk() function or generate a random walk series manually:
# series = random_walk(99999, cumprod=True)
np.random.seed(42)
random_changes = 1. + np.random.randn(99999) / 1000.
series = np.cumprod(random_changes)  # create a random walk from random changes

# Evaluate Hurst equation
H, c, data = compute_Hc(series, kind='price', simplified=True)

# Plot
f, ax = plt.subplots()
ax.plot(data[0], c*data[0]**H, color="deepskyblue")
ax.scatter(data[0], data[1], color="purple")
ax.set_xscale('log')
ax.set_yscale('log')
ax.set_xlabel('Time interval')
ax.set_ylabel('R/S ratio')
ax.grid(True)
plt.show()

print("H={:.4f}, c={:.4f}".format(H,c))

R/S analysis

H=0.4964, c=1.4877

Kinds of series

The kind parameter of the compute_Hc function can have the following values:
'change': a series is just random values (i.e. np.random.randn(...))
'random_walk': a series is a cumulative sum of changes (i.e. np.cumsum(np.random.randn(...)))
'price': a series is a cumulative product of changes (i.e. np.cumprod(1+epsilon*np.random.randn(...))

Brownian motion, persistent and antipersistent random walks

You can generate random walks with random_walk() function as following:

Brownian

brownian = random_walk(99999, proba=0.5)

Brownian motion

Persistent

persistent = random_walk(99999, proba=0.7)

Persistent random walk

Antipersistent

antipersistent = random_walk(99999, proba=0.3)

Antipersistent random walk

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distributions

No source distribution files available for this release.See tutorial on generating distribution archives.

Built Distribution

hurst-0.0.5-py3-none-any.whl (5.9 kB view details)

Uploaded Python 3

File details

Details for the file hurst-0.0.5-py3-none-any.whl.

File metadata

  • Download URL: hurst-0.0.5-py3-none-any.whl
  • Upload date:
  • Size: 5.9 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.12.1 pkginfo/1.5.0.1 requests/2.21.0 setuptools/39.1.0 requests-toolbelt/0.8.0 tqdm/4.29.1 CPython/3.6.8

File hashes

Hashes for hurst-0.0.5-py3-none-any.whl
Algorithm Hash digest
SHA256 d163f11fe2318aa8979c921d6667b8dfd6205c629924fefbed68505357cf995e
MD5 42b4c739a49ead3a6ea9eb450a7161e2
BLAKE2b-256 024fd3471ce0dca03a21d4c6640da07a6040c9cc800a937233086b6cea6a7dc2

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page