Skip to main content

Library for Hurst estimation methods

Project description

Hurst Estimators

Hurst Estimators is a Python library for estimating the Hurst exponent of time series data using various methods. This library includes implementations of several popular Hurst exponent estimation methods, as well as utilities for generating synthetic data and analyzing results.

Installation

You can install the library using pip:

pip install hurst-estimators

or clone from the github repo:

git clone https://github.com/edesaras/hurst-estimators.git

Importing the library

import hurst_estimators as he

Available Methods

Time Domain Estimators

  • Central Estimator
  • Detrended Fluctuation Estimator
  • General Hurst Exponent Estimator
  • Higuchi Estimator
  • Rescaled Range Estimator

Frequency Domain Estimators

  • Periodogram Estimator

Wavelet Estimators

  • Average Wavelet Coefficient Estimator
  • Variance Versus Level Wavelet Estimator

Simulators

  • Fractional Gaussian Noise (Circulant Embedding Method)

Quick Example

Contributing

Citation

@software{hurst_estimators,
  author = {Aras Edes},
  title = {hurst-estimators: A Python library for Hurst exponent estimation},
  year = {2024},
  publisher = {GitHub},
  journal = {GitHub repository},
  howpublished = {\url{https://github.com/edesaras/hurst-estimators}},
}

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

hurst_estimators-0.0.3.tar.gz (7.1 kB view details)

Uploaded Source

Built Distribution

hurst_estimators-0.0.3-py3-none-any.whl (12.4 kB view details)

Uploaded Python 3

File details

Details for the file hurst_estimators-0.0.3.tar.gz.

File metadata

  • Download URL: hurst_estimators-0.0.3.tar.gz
  • Upload date:
  • Size: 7.1 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: poetry/1.8.3 CPython/3.10.11 Windows/10

File hashes

Hashes for hurst_estimators-0.0.3.tar.gz
Algorithm Hash digest
SHA256 595930ad7207ae54545267402354d5b2eb0cb62b65c5c01fdbc133413ab0ad54
MD5 da8903fff2f4f7dd2d5a927f92fe8b58
BLAKE2b-256 3b2d484bd873c5478089536a3bae0b69c6facc1de2809ecbd1df71ca94a946f6

See more details on using hashes here.

File details

Details for the file hurst_estimators-0.0.3-py3-none-any.whl.

File metadata

File hashes

Hashes for hurst_estimators-0.0.3-py3-none-any.whl
Algorithm Hash digest
SHA256 173f14104d33f9a69b7176362e2512ed6cf58bbab7e690e669f86e78b490eb68
MD5 96f7b8e6cc961f86761dd891304efc99
BLAKE2b-256 954ae7951911f5fd1b9bf405478a5fc7cd178f7e5e5b7f2a67d7bfe60d90ffb1

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page