A python package containing two statistical tests for HWE testing: Gibbs Sampling test and a modified Chi Squared test that handles ambiguity
Project description
hwetests
The Hardy-Weinberg Equilibrium (HWE) assumption is essential to many population genetics models, which assumes that allele pairs from a given population are random. An HWE test needs to test whether the pairing are random or not.
Our python package contains three statistical tests for HWE testing:
- ASTA
- UMAT
- UMAT with sampling
Both ASTA and UMAT with sampling assume ambiguity in the observations while UMAT does not.
Table of Contents
Installation
Use the package manager pip to install hwetests.
pip install hwetests
Quick tour
To immediately use our package, you only need to run a single function.
ASTA
def full_algorithm(file_path,
is_first_row_contains_columns_names=False,
cutoff_value=0.0,
should_save_csv=False,
should_save_plot=False,
title=''):
Suppose
Examples
Here we show how to use our package with simulated data. You can find the scripts and the simulated data in:
├───src
│ ├───test
│ │ ├───data
│ │ │ └───unambiguous_data.csv # for ASTA and UMAT with sampling (contains 50k population, 20 alleles, 0.2 uncertainty, in HWE)
│ │ │ └───ambiguous_data.csv # for UMAT (contains 100k population, in HWE)
│ │ ├───scripts
│ │ │ └───asta_test.py
│ │ │ └───umat_test.py
│ │ │ └───umat_with_sampling_test.py
ASTA test
from hwetests import asta
if __name__ == '__main__':
p_value, statistic, dof = asta.full_algorithm(file_path='../data/ambiguous_data.csv',
cutoff_value=4.0)
print(f'p-value: {p_value}')
print(f'statistic: {statistic}')
print(f'degrees of freedom: {dof}')
UMAT test
from hwetests import umat
import numpy as np
if __name__ == '__main__':
# import data from csv file as a numpy array
data = np.genfromtxt('../data/unambiguous_data.csv', delimiter=',')
# run the test
p_value = umat.full_algorithm(data)
print(f'p-value: {p_value}')
UMAT with sampling test
from hwetests import umat_with_uncertainty
if __name__ == '__main__':
p_value = umat_with_uncertainty.full_algorithm(file_path='../data/ambiguous_data.csv')
License
asasda
Project details
Release history Release notifications | RSS feed
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.