Skip to main content

A pure python implementation of fuctional ANOVA algorithm.

Project description

HyANOVA is a pure python implementation of fuctional ANOVA algorithm, which can be used to analyze the importance of hyperparameters in machine learning algorithm.

Quick Start

To install the package, please use the pip installation as follows:

pip install hyanova

Here is a short example of usage. You can download the data from the example folder.

import hyanova

path = './iris[GridSearchCV]Model1.csv'         # gridsearch results generated by sklearn
metric = 'mean_test_score'              # metric for model performance
df,params = hyanova.read_csv(path,metric)
# df,params = hyanova.read_df(df,metric)         You can also load data from pd.DataFrame
importance = hyanova.analyze(df)

The metric is the feature you choose to evaluate the model performance, it must appears in the .csv file or the pandas.DataFrame object’s column. And the result you got will be similar to this below, see the next section(ANOVA) for more details.

print(importance)
>>>              u       v_u  F_u(v_u/v_all)
0           (alpha,)  0.056885        0.892057
1        (l1_ratio,)  0.002489        0.039030
2  (alpha, l1_ratio)  0.004394        0.068912

APIs

Load Data

HyANOVA is designed to analyze the grid search results generated by sklearn. It provides two ways to load the data.

  • You can use read_df(df,metric) to load data from a <class 'pandas.core.frame.DataFrame'> object. It will return two objects.

    • a DataFrame with all hyperparameters’ value and the value of metric you choose

    • a list of all hyperparameters’ name

    Here is an example.

    print(df.head)
    >>> mean_fit_time  std_fit_time  mean_score_time  std_score_time  param_alpha  \
    0       0.003899      0.000194         0.048513        0.007621     0.000977
    1       0.003401      0.000584         0.042454        0.011295     0.000977
    2       0.002706      0.000502         0.048544        0.009059     0.000977
    3       0.003304      0.000531         0.040709        0.003031     0.000977
    4       0.001801      0.000116         0.000289        0.000014     0.000977
    
       param_l1_ratio                                     params  \
    0            0.00   {'alpha': 0.0009765625, 'l1_ratio': 0.0}
    1            0.25  {'alpha': 0.0009765625, 'l1_ratio': 0.25}
    2            0.50   {'alpha': 0.0009765625, 'l1_ratio': 0.5}
    3            0.75  {'alpha': 0.0009765625, 'l1_ratio': 0.75}
    4            1.00   {'alpha': 0.0009765625, 'l1_ratio': 1.0}
    
       split0_test_score  split1_test_score  split2_test_score  mean_test_score  \
    0           0.828571           0.971429           0.971429         0.923810
    1           0.885714           0.971429           0.942857         0.933333
    2           0.885714           1.000000           0.942857         0.942857
    3           0.885714           0.914286           0.914286         0.904762
    4           0.885714           1.000000           0.942857         0.942857
    
       std_test_score  rank_test_score
    0        0.067344                4
    1        0.035635                3
    2        0.046657                1
    3        0.013469                5
    4        0.046657                1
    df,params = hyanova.read_df(df,'mean_test_score')
    print(df.head)
    >>>  alpha  l1_ratio  mean_test_score
    0  0.000977      0.00         0.923810
    1  0.000977      0.25         0.933333
    2  0.000977      0.50         0.942857
    3  0.000977      0.75         0.904762
    4  0.000977      1.00         0.942857
    print(params)
    >>> ['alpha', 'l1_ratio']
  • Use hyanova.read_csv(path,metric) to load data from .csv file. The template file can be find at the example folder. It is equivalent to hyanova.read_df(pandas.read_csv(path),metric).

ANOVA

Use hyanova.analyze(df) to do the functional ANOVA decomposition. It needs a pnadas.DataFrame object which has a format similar to the following table. You can use the methods HyANOVA provides to load data easily.

alpha

l1_ratio

mean_test_score

0

0.00977

0.00

0.923810

1

0.00977

0.25

0.933333

2

0.00977

0.50

0.942857

3

0.00977

0.75

0.904762

Note: The metric(mean_test_score) should always be in the last column.

The hyanova.analyze(df) will return a DataFrame with hyperparameters’ name, variance(v_u) and the importance(F_u).

importance = hyanova.analyze(df)
>>> 100%|██████████████████████████████████| 3/3 [00:00<00:00, 11.32it/s]
print(importance)
>>>              u       v_u  F_u(v_u/v_all)
0           (alpha,)  0.056885        0.892057
1        (l1_ratio,)  0.002489        0.039030
2  (alpha, l1_ratio)  0.004394        0.068912

Note: The F_u is the ratio of the variance caused by the hyperparameter itself(v_u) to the variance of all trials(v_all), so all F_u sums always equal to 1.See references for more details.

Example usage

You can use sklearn to do hyperparameters search and then use hyanova to analyze the importance of hyperparameters.

import sklearn.datasets
from sklearn.model_selection import GridSearchCV
from sklearn.svm import SVC
import pandas as pd
import hyanova

iris = sklearn.datasets.load_iris()
X = iris.data
y = iris.target
model = SVC()
grid = {'C': np.linspace(1e-9, 128, 10000)
        'kernel': ('rbf', 'linear', 'poly', 'sigmoid')}
grid_search = GridSearchCV(model,grid)
result = grid_search.fit(X, y)
df = pd.DataFrame(result.cv_results_)
metric = 'mean_test_score'
df, params = hyanova.read_df(df,metric)
importance = hyanova.analyze(df)

Dependencies

  • numpy

  • pandas

  • tqdm

Why created HyANOVA?

I am completing my undergraduate thesis. In order to better understand the models used in my article, I looked for a lot of algorithms that can measure the importance of hyperparameters. Among them, functional ANOVA seems to be the most effective. But the original author’s implementation is based on java and uses python to call java files, which confuses me. I hope there is a module that is easier to understand and implemented completely based on python, which can help me with ANOVA decomposition, so I created HyANOVA. Hope that will help you too!

References

  1. Hutter, F., Hoos, H. & Leyton-Brown, K.. (2014). An Efficient Approach for Assessing Hyperparameter Importance. Proceedings of the 31st International Conference on Machine Learning, in PMLR 32(1):754-762

  2. https://github.com/frank-hutter/fanova

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

hyanova-1.0.9.zip (14.2 kB view details)

Uploaded Source

Built Distribution

hyanova-1.0.9-py3-none-any.whl (6.0 kB view details)

Uploaded Python 3

File details

Details for the file hyanova-1.0.9.zip.

File metadata

  • Download URL: hyanova-1.0.9.zip
  • Upload date:
  • Size: 14.2 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.1.0 pkginfo/1.5.0.1 requests/2.22.0 setuptools/45.0.0 requests-toolbelt/0.9.1 tqdm/4.41.1 CPython/3.6.5

File hashes

Hashes for hyanova-1.0.9.zip
Algorithm Hash digest
SHA256 726393752bbb4775c7c10e4139c46203bd2c9be003fafd6b5a67eb8878f324ae
MD5 2625b6d6de864d31aa3e03c3e4419a11
BLAKE2b-256 d5dff4ce3700b2ed6b306ffb90ec523f9e88c7e2e56e9596f48aa0483ef7c295

See more details on using hashes here.

File details

Details for the file hyanova-1.0.9-py3-none-any.whl.

File metadata

  • Download URL: hyanova-1.0.9-py3-none-any.whl
  • Upload date:
  • Size: 6.0 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.1.0 pkginfo/1.5.0.1 requests/2.22.0 setuptools/45.0.0 requests-toolbelt/0.9.1 tqdm/4.41.1 CPython/3.6.5

File hashes

Hashes for hyanova-1.0.9-py3-none-any.whl
Algorithm Hash digest
SHA256 f9d5ce2c84a67367becc25573153039bba6b8282d04e38913b6fe4c1c60c6f61
MD5 03940358d07903a7e6a700b0b67ca588
BLAKE2b-256 4109cd7f1fe32455ca4fa7304ba98a693476c8ea73b135737f3c786a65bf2199

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page