methods to calculate extracellular signals of neural activity from spike events from spiking neuron networks
Project description
hybridLFPy
Python module implementing a hybrid scheme for predictions of extracellular potentials (local field potentials, LFPs) of spiking neuron network simulations.
Project Status
Development
The module hybridLFPy was mainly developed in the Computational Neuroscience Group (http://compneuro.umb.no), Department of Mathemathical Sciences and Technology (http://www.nmbu.no/imt), at the Norwegian University of Life Sciences (http://www.nmbu.no), Aas, Norway, in collaboration with Institute of Neuroscience and Medicine (INM-6) and Institute for Advanced Simulation (IAS-6), Juelich Research Centre and JARA, Juelich, Germany (http://www.fz-juelich.de/inm/inm-6/EN/).
Citation
Should you find hybridLFPy
useful for your research, please cite the
following paper:
Espen Hagen, David Dahmen, Maria L. Stavrinou, Henrik Lindén, Tom Tetzlaff,
Sacha J. van Albada, Sonja Grün, Markus Diesmann, Gaute T. Einevoll;
Hybrid Scheme for Modeling Local Field Potentials from Point-Neuron Networks,
Cerebral Cortex, Volume 26, Issue 12, 1 December 2016, Pages 4461–4496,
https://doi.org/10.1093/cercor/bhw237
Bibtex source:
@article{doi:10.1093/cercor/bhw237,
author = {Hagen, Espen and Dahmen, David and Stavrinou, Maria L. and Lindén,
Henrik and Tetzlaff, Tom and van Albada, Sacha J. and Grün, Sonja and
Diesmann, Markus and Einevoll, Gaute T.},
title = {Hybrid Scheme for Modeling Local Field Potentials from
Point-Neuron Networks},
journal = {Cerebral Cortex},
volume = {26},
number = {12},
pages = {4461-4496},
year = {2016},
doi = {10.1093/cercor/bhw237},
URL = { + http://dx.doi.org/10.1093/cercor/bhw237},
eprint = {/oup/backfile/content_public/journal/cercor/26/12/10.1093_cercor_bhw237/2/bhw237.pdf}
}
License
This software is released under the General Public License (see the LICENSE file).
Warranty
This software comes without any form of warranty.
Installation
First download all the hybridLFPy
source files using git
(http://git-scm.com). Open a terminal window and type:
cd $HOME/where/to/put/hybridLFPy
git clone https://github.com/INM-6/hybridLFPy.git
To use hybridLFPy
from any working folder without copying files, run:
(sudo) pip install -e . (--user)
Installing it is also possible, but not recommended as things might change with future pulls from the repository:
(sudo) pip install . (--user)
examples folder
Some example script(s) on how to use this module
docs folder
Source files for autogenerated documentation using Sphinx
(https://www.sphinx-doc.org).
To compile documentation source files in this directory using sphinx, use:
sphinx-build -b html docs documentation
Dockerfile
The provided Dockerfile
provides a Docker container recipe for x86_64
hosts
with all dependencies required to run simulation files provided in examples
.
To build and run the container locally, get Docker from https://www.docker.com
and issue the following (replace <image-name>
with a name of your choosing):
docker build -t <image-name> -< Dockerfile
docker run -it -p 5000:5000 <image-name>:latest
The --mount
option can be used to mount a folder on the host to a target
folder as:
docker run --mount type=bind,source="$(pwd)",target=/opt/hybridLFPy \
-it -p 5000:5000 <image-name>
Then, code examples may be run as:
cd /opt/hybridLFPy/examples
nrnivmodl # compile local .mod (NMODL) files
mpirun --allow-run-as-root python3 example_brunel.py
Online documentation
The sphinx-generated html documentation can be accessed at https://hybridLFPy.readthedocs.io
Project details
Release history Release notifications | RSS feed
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
File details
Details for the file hybridLFPy-0.2.tar.gz
.
File metadata
- Download URL: hybridLFPy-0.2.tar.gz
- Upload date:
- Size: 50.6 kB
- Tags: Source
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/3.4.1 importlib_metadata/4.5.0 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.61.1 CPython/3.9.5
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 274ae61794293907b4d0e6442f848c0aff612840f61361ed06d4ff684241fc8d |
|
MD5 | 7fc0c08b59a3376b4342b6f989da81d9 |
|
BLAKE2b-256 | 592d66cf9e02fcb6f5ba61cade8a572a6854ce4577f4d57ea81516e76c2c6adb |