Skip to main content

Hydra Orion Sweeper plugin

Project description

Current PyPi Version Supported Python Versions codecov docs tests style

Provides a mechanism for Hydra applications to use Orion algorithms for the optimization of the parameters of any experiment.

See website for more information

Install

pip install hydra-orion-sweeper

Search Space

Orion defines 5 different dimensions that can be used to define your search space.

  • uniform(low, high, [discrete=False, precision=4, shape=None, default_value=None])

  • loguniform(low, high, [discrete=False, precision=4, shape=None, default_value=None])

  • normal(loc, scale, [discrete=False, precision=4, shape=None, default_value=None])

  • choices(*options)

  • fidelity(low, high, base=2)

Fidelity is a special dimension that is used to represent the training time, you can think of it as the epoch dimension.

Documentation

For in-depth documentation about the plugin and its configuration options you should refer to Orion as the plugin configurations are simply passed through.

Example

Configuration

defaults:
- override hydra/sweeper: orion

hydra:
    sweeper:
       params:
          a: "uniform(0, 1)"
          b: "uniform(0, 1)"

       experiment:
          name: 'experiment'
          version: '1'

       algorithm:
          type: random
          config:
             seed: 1

       worker:
          n_workers: -1
          max_broken: 3
          max_trials: 100

       storage:
          type: legacy
          database:
             type: pickleddb
             host: 'database.pkl'

# Default values
a: 0
b: 0

Code

import hydra
from omegaconf import DictConfig

@hydra.main(config_path=".", config_name="config")
def main(cfg: DictConfig) -> float:
   """Simple main function"""
   a = cfg.a
   b = cfg.b

   return float(a + b)

if __name__ == "__main__":
   main()

Running

To run the hyper parameter optimization process you need to specify the --multirun argument.

python my_app.py --multirun

The search space can also be tweaked from the command line

python my_app.py --multirun batch_size=4,8,12,16 optimizer.name=Adam,SGD 'optimizer.lr="loguniform(0.001, 1.0)"'

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

hydra-orion-sweeper-1.6.4.tar.gz (10.4 kB view details)

Uploaded Source

Built Distribution

hydra_orion_sweeper-1.6.4-py3-none-any.whl (11.0 kB view details)

Uploaded Python 3

File details

Details for the file hydra-orion-sweeper-1.6.4.tar.gz.

File metadata

  • Download URL: hydra-orion-sweeper-1.6.4.tar.gz
  • Upload date:
  • Size: 10.4 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.9.18

File hashes

Hashes for hydra-orion-sweeper-1.6.4.tar.gz
Algorithm Hash digest
SHA256 f2632886a6424d61d71ab537f4ee4e9b6dfce565536e63bc8862ccb99ef2eb6a
MD5 3e1da55f7feb6ba184ca1f026f94558e
BLAKE2b-256 cf169f7ae23cd7ec5d05da29064925858fe475148fdc8f0017f2153d21fceda5

See more details on using hashes here.

File details

Details for the file hydra_orion_sweeper-1.6.4-py3-none-any.whl.

File metadata

File hashes

Hashes for hydra_orion_sweeper-1.6.4-py3-none-any.whl
Algorithm Hash digest
SHA256 62dfb861b449a77e42150879e45430820fb2534487427949069f5fa8fb35d4f6
MD5 ac03d62930049e650936040de89a72fc
BLAKE2b-256 9b3b4768e05225d8b8eb009cc82a70d3d76490f64297794fca174724e1b2f25f

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page