Skip to main content

A steady-state stream model and python access to DFS-files

Project description

hydroinform

This package contains a steady-state stream model and some tools to access .dfs-files from DHI

Usage

Convert .dfs, res1d and res11-files to netCDF:

#Import NetCDF and DFS from hydroinform
from hydroinform import NetCDF, DFS

#Saves "omr4_jag_3DSZ.dfs3 as "omr4_jag_3DSZ.nc"
NetCDF.save_as_NetCDF('omr4_jag_3DSZ.dfs3')

#Saves "omr4_jag_3DSZ.dfs3 as "newname.nc"
NetCDF.save_as_NetCDF('omr4_jag_3DSZ.dfs3','newname.nc')

#Saves only the first item and the second and fourth time step from "omr4_jag_3DSZ.dfs3""
d= DFS.DFSBase.open_file('omr4_jag_3DSZ.dfs3')
NetCDF.save_dfs_as_NetCDF(d, [0], [1,3], 'omr4_jag_3DSZ_one_time.nc')

#Saves the discharge data from "Storaa_HD_quasiStationary_20090701.res1d" as 'Storaa_HD_quasiStationary_20090701.nc'
NetCDF.save_as_NetCDF('Storaa_HD_quasiStationary_20090701.res1d')

Write a pump extraction file to be used with MikeZero:

#Import DFS from HydroInform
from hydroinform import DFS
import datetime

#The number of Items (In this case number of pumping wells)
numberofitems = 5;

#Now create the file.
_tso = DFS.DFS0.new_file(r'c:\temp\extraction.dfs0', numberofitems);

#Loop the items and set the units etc.
for itemCount in range (0, numberofitems):
    _tso.items[itemCount].value_type = DFS.DataValueType.MeanStepBackward
    _tso.items[itemCount].eum_item = DFS.EumItem.eumIPumpingRate
    _tso.items[itemCount].eum_unit = DFS.EumUnit.eumUm3PerYear
    _tso.items[itemCount].name = "Item number: " + str(itemCount)
      
#Loop the years where you have pumping data
tscount = 0;
for year in range(2010, 2016):
    #For every year append a new timestep
    _tso.append_time_step(datetime.datetime(year, 12, 31, 12))
    #Loop the items and set a value for this timestep
    for itemCount in range (0, numberofitems):
        #Sets the data. Note that timesteps count from 0 and Items count from 1
        _tso.set_data(tscount, itemCount+1, year * itemCount)
    tscount+=1
#Call dispose which will save and close the file.
_tso.dispose()

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

hydroinform-0.1.17.tar.gz (47.4 kB view details)

Uploaded Source

Built Distribution

hydroinform-0.1.17-py3-none-any.whl (49.7 kB view details)

Uploaded Python 3

File details

Details for the file hydroinform-0.1.17.tar.gz.

File metadata

  • Download URL: hydroinform-0.1.17.tar.gz
  • Upload date:
  • Size: 47.4 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.1.1 pkginfo/1.5.0.1 requests/2.23.0 setuptools/47.1.0 requests-toolbelt/0.9.1 tqdm/4.45.0 CPython/3.7.8

File hashes

Hashes for hydroinform-0.1.17.tar.gz
Algorithm Hash digest
SHA256 d4ad429b18ff2c0b56feb6f19eeb7a79af34e04cbb6ff03d5dd3242b1dbcada2
MD5 324ba81114a9b7a7a24608316d79db2f
BLAKE2b-256 4c454b0b97be5b2882f930dd959e5256dd5078e3013d5aa52112a801b183ffaf

See more details on using hashes here.

File details

Details for the file hydroinform-0.1.17-py3-none-any.whl.

File metadata

  • Download URL: hydroinform-0.1.17-py3-none-any.whl
  • Upload date:
  • Size: 49.7 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.1.1 pkginfo/1.5.0.1 requests/2.23.0 setuptools/47.1.0 requests-toolbelt/0.9.1 tqdm/4.45.0 CPython/3.7.8

File hashes

Hashes for hydroinform-0.1.17-py3-none-any.whl
Algorithm Hash digest
SHA256 3b6f785cbef9149232040466b3872486fd1a03f3a932db61e299fe7f8ce0ba86
MD5 4280859d593a7c2fe285fb7dd70b4b1e
BLAKE2b-256 fe99b5b3e4b5bf82c22b5d5b0bb07d41d0ac1bd87fd42152d981a9ec1707a5d1

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page