Skip to main content

A python package for astronomical calculations

Project description

Author: Behrouz Safari
License: MIT

hypatie

A python package for astronomical calculations

Installation

Install the latest version of hypatie from PyPI:

pip install hypatie

Requirements are numpy, pandas and matplotlib.

Quick start

Let's get the positions of the sun between two times:

import hypatie as hp

t1 = '2021-03-20 08:00:00'
t2 = '2021-03-20 10:00:00'

If you want the apparent RA and DEC of the Sun with respect to Earth's center (geocentric):

obs = hp.Observer('sun', t1, t2, step=5)

Now you can access the time intervals with .time attribute:

print(obs.time)

[datetime.datetime(2021, 3, 20, 8, 0)
 datetime.datetime(2021, 3, 20, 8, 24)
 datetime.datetime(2021, 3, 20, 8, 48)
 datetime.datetime(2021, 3, 20, 9, 12)
 datetime.datetime(2021, 3, 20, 9, 36)
 datetime.datetime(2021, 3, 20, 10, 0)]

To acces the position you can use obs.pos, obs.ra, or obs.dec:

print(obs.pos)

[[ 3.59938235e+02 -2.66803120e-02]
 [ 3.59953431e+02 -2.00920520e-02]
 [ 3.59968627e+02 -1.35038600e-02]
 [ 3.59983823e+02 -6.91573600e-03]
 [ 3.59999018e+02 -3.27680000e-04]
 [ 1.42132560e-02  6.26030600e-03]]

The first column in the above array is RA and the second column is DEC.

It is possible to get the apparent RA & DEC of a targer with respect to a specified location on the surface of a body. For example, if you want to get the apparent RA & DEC of the Sun for the Eiffel Tower :

obs = hp.Observer('sun', t1, t2, step=5, center='2.2945,48.8584,300@399')

Note that 2.2945 is the longtitude, 48.8584 is the latitude and 300 (meters) is the elevation of the Eiffel Tower. We have specified '@399' at the end which means that this coordinates is situated on the Earth (399 is the Earth's code).

You can request the cartesian positions (x,y,z) of a target with Vector class.

vec = hp.Vector('sun', t1, t2, step=5)

As with the Observer class, there are two attributes .time and .pos for Vector class. Note that when creating a Vector class, you have .x, .y and .z attributes instead of .ra and .dec.

For both Vector and Observer classes you can pass a single time to get position/state of a body at a single time:

vec = hp.Vector('sun', t1)

Both Vector and Observer classes have .plot() method.

# plot polar coordinates
obs.plot()
# plot cartesian coordinates
vec.plot()

Example: animating James Webb Space Telescope

In addition to .plot() method of Vector and Observer classes, there's a play() function that you can pass it a list of Vector objects as well as some other lists as shown in the example below:

import hypatie as hp
import matplotlib.pyplot as plt

t1 = '2018-10-01 14:18:00'
t2 = '2024-12-31 12:18:00'

# get positions with respect to the barycenter of earth-moon
earth = hp.Vector('399', t1, t2, center='500@3', step=1000)
moon = hp.Vector('301', t1, t2, center='500@3', step=1000)
jwst = hp.Vector('-170', t1, t2, center='500@3', step=1000)

bodies = [earth, moon, jwst]
names = ['Earth', 'Moon', 'James Webb']
colors = ['b','g','r']
sizes = [20, 8, 3]

# play the animation
anim = hp.play(bodies, names, colors, sizes)
plt.show()

Deep sky

You can download data from astronomical catalogues:

cat = hp.Catalogue('gaia2')
data, meta = cat.download()

or, plot the star chart for your location:

ax = hp.star_chart(lon=2.2945, lat=48.8584)
plt.show()

or, use a virtual telescope:

target = (10.6847,41.2687) # az,alt of a point in the sky
paris = (2.2945, 48.8584)  # location of observer

# get image with 3 degrees field of view
tel = hp.Telescope(target_loc=target, obs_loc=paris, fov=3)
tel.show()

Project details


Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

hypatie-2.8.1.tar.gz (51.3 kB view details)

Uploaded Source

Built Distribution

hypatie-2.8.1-py3-none-any.whl (51.1 kB view details)

Uploaded Python 3

File details

Details for the file hypatie-2.8.1.tar.gz.

File metadata

  • Download URL: hypatie-2.8.1.tar.gz
  • Upload date:
  • Size: 51.3 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.7.1 importlib_metadata/4.6.1 pkginfo/1.8.2 requests/2.22.0 requests-toolbelt/0.9.1 tqdm/4.61.2 CPython/3.8.10

File hashes

Hashes for hypatie-2.8.1.tar.gz
Algorithm Hash digest
SHA256 5d07811dcf817bb8b69ea0b4774f2f18c75c1d829d74c2194fe0e25615754953
MD5 b92eb56643bbd0adf3787ae1a791f32e
BLAKE2b-256 62252095fd02f4442f80a0c54e6c992b44abaa2d5936292f59b5bf9bcae263d4

See more details on using hashes here.

File details

Details for the file hypatie-2.8.1-py3-none-any.whl.

File metadata

  • Download URL: hypatie-2.8.1-py3-none-any.whl
  • Upload date:
  • Size: 51.1 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.7.1 importlib_metadata/4.6.1 pkginfo/1.8.2 requests/2.22.0 requests-toolbelt/0.9.1 tqdm/4.61.2 CPython/3.8.10

File hashes

Hashes for hypatie-2.8.1-py3-none-any.whl
Algorithm Hash digest
SHA256 d3c13b130b7bc09634e34fcc5e6dab14962882785fe5135f2cdbb797129019da
MD5 bd4fffe34ca47d1a99c0f5283fdeeb0b
BLAKE2b-256 ca53c81d68f49b77226a5fc362ab07f9394623957d41ac0153c9db6ff9751634

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page